Skip to main content

Abstract

In both development and production of semiconductor lasers, failure analysis is crucial to quickly identifying what is responsible for problems once they have been encountered. This chapter gives guidance for how failure analysis is done in an industrial or production setting. It starts with a generalized flow chart and popular techniques for preliminary FA, as well as secondary, and finally in-depth “tertiary” techniques. The details of each of the techniques are presented in sections that give guidance on common uses for each of the techniques, strengths and weaknesses of them, and many examples of data or references with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Magistrali, E. Mariani, G. Salmini, M. Vanzi, Failure analysis of 980 nm high power lasers, in Proceedings of ISTFA, vol. 20, 1994, pp. 335–340

    Google Scholar 

  2. J.J. LePore, An improved technique for selective etching of GaAs and Ga1-xAlxAs. J. Appl. Phys. 51, 6441 (1980)

    Article  ADS  Google Scholar 

  3. O. Ueda, I. Umebu, S. Yamazaki, K. Oinuma, T. Kaneda, T. Kotani, Characterization of defects in liquid phase epitaxial InP and InGaAsP crystals by scanning electron microscopy and electron beam induced current method. J. Electron Microsc. 33(1), 1 (1984)

    Google Scholar 

  4. O. Ueda, I. Umebu, S. Yamakoshi, T. Kotani, Nature of dark defects revealed in InGaAsP/InP double heterostructure light emitting diodes aged at room temperature. J. Appl. Phys. 53(4), 2991–2997 (1982)

    Article  ADS  Google Scholar 

  5. R.G. Waters, Diode laser degradation mechanisms: a review. Prog. Quantum Electron. 15(3), 153–174 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Guenter, D. Mathes, B. Hawkins, J. Tatum, Developments at Finisar AOC, in Proceedings of SPIE, vol. 6908, San Jose, USA, 2008, vol. 6908, p. 690805

    Google Scholar 

  7. R.W. Herrick, Failure analysis and reliability of optoelectronic devices, in Microelectronics Failure Analysis Desk Reference, 5th edn. (ASM International, Materials Park, Ohio, 2004), pp. 230–254

    Google Scholar 

  8. R. S. Mann, D. K. McElfresh, Categorizing light output degradation failures in LEDs using the relationship between defect revealing mechanisms responsible for EL, CL, EBIC, and reverse bias photoemission (RP), in Proceedings IEEE International Reliability Physics. Symposium, Las Vegas, NV, 1995, pp. 177–186

    Google Scholar 

  9. D.K. McElfresh, L.D. Lopez, D. Vacar, Reverse-bias emission sheds light on the failure mechanism of degraded vertical-cavity surface-emitting lasers. J. Appl. Phys. 99(12), 123113 (2006)

    Article  ADS  Google Scholar 

  10. H. Ishikawa, H. Imai, T. Tanahashi, Y. Nishitani, M. Takusagawa, K. Takahei, V-grooved substrate buried heterostructure InGaAsP/InP laser. Electro. Lett. 17(13), 465–467 (1981)

    Article  Google Scholar 

  11. G. Olsen, M. Ettenberg, Universal stain/etchant for interfaces in III-V compounds. J. Appl. Phys. 45(11), 5112–5114 (1974)

    Article  ADS  Google Scholar 

  12. R.E. Ewing, D.K. Smith, Compositional inhomogeneities in GaAs1-xPx alloy epitaxial layers. J. Appl. Phys. 39(13), 5943–5948 (1968)

    Article  ADS  Google Scholar 

  13. O. Ueda, I. Ushijima, T. Tanahashi, Detecting Method for PN Junction in Compound Semiconductor. Japanese Patent S58-563501983

    Google Scholar 

  14. T. Kotani, O. Ueda, K. Akita, Y. Nishitani, T. Kusunoki, O. Ryuzan, Direct observation of defects in Si-doped and Ge-doped Ga0. 9Al0. 1As epitaxial layers by transmission electron microscopy. J Crystal Growth 38(1), 85–92 (1977)

    Article  ADS  Google Scholar 

  15. O. Ueda, H. Imai, A. Yamaguchi, S. Komiya, I. Umebu, T. Kotani, Mechanism of catastrophic degradation in 1.3um V-grooved substrate buried-heterostructure lasers with the application of large pulsed currents. J. Appl. Phys. 55(3), 665–669 (1984)

    Article  ADS  Google Scholar 

  16. J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32, 400–407 (2007)

    Article  Google Scholar 

  17. T.J. Stark, P.E. Russell, C. Nevers, 3-D defect characterization using plan view and cross-sectional TEM/STEM analysis. in Proc of ISTFA, San Jose, California, USA, 2005, vol. 31, p. 344

    Google Scholar 

  18. O. Ueda, Chapter 6: Evaluation techniques for III-V compound semiconductors and degraded optical devices, in Reliability and Degradation of III-V Optical Devices (Artech House Publishers, Boston/London, 1996), pp. 45–74

    Google Scholar 

  19. M. Shiojiri, High-resolution electron microscopy observations of GaN-based laser diodes, in III-Nitride Devices and Nanoengineering (Imperial College Press, London, 2008), pp. 159–188

    Chapter  Google Scholar 

  20. S. Tomiya, M. Ikeda, S. Tanaka, Y. Kanitani, T. Ohkubo, K. Hono, Structural defects in GaN-based materials and their relation to GaN-based laser diodes, in MRS Proceedings, Boston, Massachusetts, USA, 2009, vol. 1195

    Google Scholar 

  21. S. Tomiya, Y. Kanitani, S. Tanaka, T. Ohkubo, K. Hono, Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits. Appl. Phys. Lett. 98, 181904 (2011)

    Article  ADS  Google Scholar 

  22. T.F. Kelly et al., Atom probe tomography of electronic materials. Annu. Rev. Mater. Res. 37, 681–727 (2007)

    Article  ADS  Google Scholar 

  23. T.F. Kelly, M.K. Miller, Invited review article: atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007)

    Article  ADS  Google Scholar 

  24. M.J. Galtrey et al., Three-dimensional atom probe studies of an InxGa1-xN/GaN multiple quantum well structure: assessment of possible indium clustering. Appl. Phys. Lett. 90(6), 061903–061903 (2007)

    Article  ADS  Google Scholar 

  25. B. Bastek et al., Nano-scale correlation of structural and optical properties of DBRs using STEM CL. Proc of SPIE 7939, 7939–46 (2011)

    Google Scholar 

  26. Y.M. Cheng, R.W. Herrick, P.M. Petroff, M.K. Hibbs-Brenner, R.A. Morgan, Degradation studies of proton-implanted vertical cavity surface emitting lasers. Appl. Phys. Lett. 67(12), 1648–1650 (1995)

    Article  ADS  Google Scholar 

  27. R.W. Herrick, P.M. Petroff, Gradual degradation in 850-nm vertical-cavity surface-emitting lasers. Quantum Electron. IEEE J. 34(10), 1963–1969 (1998)

    Article  ADS  Google Scholar 

  28. D. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45(7), 3023–3032 (1974)

    Article  ADS  Google Scholar 

  29. J.W. Tomm et al., Deep level spectroscopy of high-power laser diode arrays. J. Appl. Phys. 84, 1325 (1998)

    Article  ADS  Google Scholar 

  30. M Meneghini et al, Investigation of the deep level involved in InGaN laser degradation by deep level transient spectroscopy. Appl. Phys. Lett. 99(9), 093506–093506-3 (2011)

    Article  ADS  Google Scholar 

  31. K. Luo, R. Herrick, A. Majumdar, P. Petroff, Scanning thermal microscopy of a vertical-cavity surface-emitting laser. Appl. Phys. Lett. 71, 1604–1606 (1997)

    Article  ADS  Google Scholar 

  32. J.A. DeAro, K.D. Weston, R.W. Herrick, P.M. Petroff, S.K. Buratto, Near-field scanning optical microscopy of cleaved vertical-cavity surface-emitting lasers. Semiconduct. Sci. Technol. 13, 1364 (1998)

    Article  ADS  Google Scholar 

  33. J.J. Kopanski, Scanning capacitance microscopy for electrical characterization of semiconductors and dielectrics, in Scanning Probe Microscopy, vol. 1 (Springer, New York, 2007), pp. 88–112

    Chapter  Google Scholar 

  34. O. Douheret, K. Maknys, S. Anand, Electrical characterization of III-V buried heterostructure lasers by scanning capacitance microscopy, in Scanning Probe Microscopy (Kluwer, Dordrecht, 2005), pp. 413–424

    Google Scholar 

  35. P. Eyben, W. Vandervorst, D. Alvarez, M. Xu, M. Fouchier, Dopant profiling in InP with SSRM (a subsection of ‘probing semiconductor technology and devices with scanning spreading resistance microscopy’), in Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale (Springer, New York, 2007), pp. 73–87

    Google Scholar 

  36. S. Kuntze, D. Ban, E. Sargent, S.J. Dixon-Warren, J. White, K. Hinzer, Electrical scanning probe microscopy: investigating the inner workings of electronic and optoelectronic devices. Crit. Rev. Solid State Mater. Sci. 30(2), 71–124 (2005)

    Article  ADS  Google Scholar 

  37. D. Ban et al., Two-dimensional transverse cross-section nanopotentiometry of actively driven buried-heterostructure multiple-quantum-well lasers. J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 20(6), 2401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. David Venables of JDSU and Dr. Michael Salmon on Evans Analytical (Raleigh, NC) for a careful reading of the manuscript and their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Ueda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ueda, O., Herrick, R.W. (2013). Failure Analysis of Semiconductor Optical Devices. In: Ueda, O., Pearton, S. (eds) Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4337-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4337-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4336-0

  • Online ISBN: 978-1-4614-4337-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics