Skip to main content

The Primate Placenta as an Agent of Developmental and Health Trajectories Across the Life Course

  • Chapter
  • First Online:
Building Babies

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR,volume 37))

Abstract

The significance of the intrauterine environment extends beyond the fetal and postnatal phases of growth into adulthood and across generations, as addressed by the developmental programming research paradigm. Much of this paradigm hinges on interpretations of birth weight as a proxy of this dynamic environment. However, the key player in this environment and more direct driver of birth weight is often overlooked and poorly understood in this context. The placenta is an incredible organ, existing in obscurity for a relatively short time, but performing myriad functions at the complex genomic intersection of three individuals: mother, father, and fetus. Regulation of placental function and structure is complex; just as fetal growth is a variable and plastic phenomenon depending on maternal condition, so does placental function respond sensitively to external ecological inputs. The goal of this chapter is to introduce the reader to the placenta as an extrasomatic fetal organ that interacts directly with maternal ecology, describe some of the mechanisms that underlie fetal development, explore the morphological and functional plasticity of the placenta in relation to fetal growth variation particularly in humans, and relate these observations to programming of adult function. Further, I present lessons about placental plasticity in a litter-bearing anthropoid primate, the common marmoset monkey, with special attention paid to life history and reproductive programming to suggest that placental function may serve as a driver of evolutionary change. Finally, I argue that including the placenta in primate research will lead to important evolutionary and clinically-relevant discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the case of the litter-bearing callitrichine primates, all fetuses contribute to the genetic composition of the placenta.

References

  • Abrams ET, Rutherford JN (2012) Is postpartum hemorrhage a legacy of our evolutionary past? A textbook of postpartum hemorrhage, 2nd edn. Sapiens Publishing (in press)

    Google Scholar 

  • ACOG (2008) ACOG Committee Opinion No. 402: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol 111(3):805–807

    Google Scholar 

  • Allen KL, Kay RF (2011) Dietary quality and encephalization in platyrrhine primates. Proc R Soc B Biol Sci 279(1729):715–721

    Google Scholar 

  • Alwasel SH, Abotalib Z, Aljarallah JS, Osmond C, Alkharaz SM, Alhazza IM, Badr G, Barker DJP (2010) Changes in placental size during Ramadan. Placenta 31(7):607–610

    PubMed  CAS  Google Scholar 

  • Alwasel SH, Abotalib Z, Aljarallah JS, Osmond C, Alkharaz SM, Alhazza IM, Harrath A, Thornburg K, Barker DJP (2011) Secular increase in placental weight in Saudi Arabia. Placenta 32(5):391–394

    PubMed  CAS  Google Scholar 

  • Antonow-Schlorke IM, Schwab M, Cox LA, Li C, Stuchlik K, Witte OW, Nathanielsz PW, McDonald TJ (2011) Vulnerability of the fetal primate brain to moderate reduction in maternal global nutrient availability. Proc Natl Acad Sci USA 108(7):3011–3016

    PubMed  CAS  Google Scholar 

  • Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L (2004) Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 561(2):355–377

    PubMed  CAS  Google Scholar 

  • Azpurua H, Funai EF, Coraluzzi LM, Doherty LF, Sasson IE, Kliman M, Kliman HJ (2010) Determination of placental weight using two-dimensional sonography and volumetric mathematic modeling. Am J Perinatol 27(02):151–155

    PubMed  Google Scholar 

  • Bagby SP (2009) Developmental origins of renal disease: should nephron protection begin at birth? Clin J Am Soc Nephrol 4(1):10–13

    PubMed  Google Scholar 

  • Ballantyne JW (1902) A manual of antenatal pathology and hygiene of the foetus. William Green and Sons, Edinburgh

    Google Scholar 

  • Barker DJP, Godfrey KM, Osmond C, Bull A (1992) The relation of fetal length, ponderal index and head circumference to blood pressure and the risk of hypertension in adult life. Paediatr Perinat Epidemiol 6:35–44

    PubMed  CAS  Google Scholar 

  • Barker DJP (1995) Fetal origins of coronary heart disease. Br Med J 311(6998):171–174

    CAS  Google Scholar 

  • Barker DJP, Bull A, Osmond C, Simmonds S (1990) Fetal and placental size and risk of hypertension in adult life. Br Med J 301(6746):259–262

    CAS  Google Scholar 

  • Barker DJP, Gelow J, Thornburg K, Osmond C, Kajantie E, Eriksson JG (2010) The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur J Heart Fail 12(8):819–825

    PubMed  Google Scholar 

  • Battaglia FC, Meschia G (1986) An introduction to fetal physiology. Academic, Orlando

    Google Scholar 

  • Baur R (1977) Morphometry of the placental exchange area. Adv Anat Embryol Cell Biol 53(1):3–65

    PubMed  CAS  Google Scholar 

  • Benirschke K (2002) Comparative placentation. In: Benirschke K (ed) University of California at San Diego School of Medicine, San Diego

    Google Scholar 

  • Benirschke K, Driscoll SG (1967) Pathology of the human placenta, 1st edn. Springer, New York

    Google Scholar 

  • Benirschke K, Kaufmann P (eds) (2000) Pathology of the human placenta, 4th edn. Springer, New York, 522 pp

    Google Scholar 

  • Benirschke K, Miller CJ (1982) Anatomical and functional differences in the placenta of primates. Biol Reprod 26(1):29–53

    PubMed  CAS  Google Scholar 

  • Bryant-Stephens T (2009) Asthma disparities in urban environments. J Allergy Clin Immunol 123(6):1199–1206

    PubMed  Google Scholar 

  • Buckley SJ (2006) Placenta rituals and folklore from around the world. Midwifery Today 80:58–59

    PubMed  Google Scholar 

  • Burton GJ, Jauniaux E, Watson AL (1999) Maternal arterial connections to the placental intervillous space during the first trimester of human pregnancy: The Boyd Collection revisited. Am J Obstet Gynecol 181(3):718–724

    PubMed  CAS  Google Scholar 

  • Burton GJ, Watson AL, Hempstock J, Skepper JN, Jauniaux E (2002) Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J Clin Endocrinol Metab 87(6):2954–2959

    PubMed  CAS  Google Scholar 

  • Burton G, Barker DJP, Moffett A, Thornburg K (2011a) Introduction. In: Burton GJ, Barker DJ, Moffett A, Thornburg K (eds) The Placenta and Human Developmental Programming. Cambridge University Press, New York, pp 1–4

    Google Scholar 

  • Burton GJ, Barker DJP, Moffett A, Thornburg K (eds) (2011b) The Placenta and Human Developmental Programming. Cambridge University Press, Cambridge

    Google Scholar 

  • Campbell FM, Gordon MJ, Dutta-Roy AK (1996) Preferential uptake of long chain polyunsaturated fatty acids by isolated human placental membranes. Mol Cell Biochem 155(1):77–83

    PubMed  CAS  Google Scholar 

  • Carter AM, Enders AC (2004a) Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol 5(2):46

    Google Scholar 

  • Carter AM, Enders AC (2004b) Comparative aspects of trophoblast development and placentation. Reprod Biol Endocrinol 2(1):1–15

    Google Scholar 

  • Carter AM, Pijnenborg R (2011) Evolution of invasive placentation with special reference to non-human primates. Best Pract Res Clin Obstet Gynaecol 25(3):249–257

    PubMed  Google Scholar 

  • Cetin I (2001a) Amino acid interconversions in the fetal-placental unit: the animal model and human studies in vivo. Pediatr Res 49(2):148–154

    PubMed  CAS  Google Scholar 

  • Cetin I (2001b) The endocrine and metabolic profile of the growth-retarded fetus. J Pediatr Endocrinol Metab 14(Suppl 6):1497–1505

    PubMed  Google Scholar 

  • Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, Giovannini M, Pardi G (2002) Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res 52(5):750–755

    PubMed  CAS  Google Scholar 

  • Cetin I, Alvino G, Cardellicchio M (2009) Long chain fatty acids and dietary fats in fetal nutrition. J Physiol 587(Pt 14):3441–3451

    PubMed  CAS  Google Scholar 

  • Chambers PL, Hearn JP (1985) Embryonic, foetal and placental development in the common marmoset monkey (Callithrix jacchus). J Zool 207(4):545–561

    Google Scholar 

  • Clancy KBH (2009) Reproductive ecology and the endometrium: physiology, variation, and new directions. Yearbook Phys Anthropol 53:137–154

    Google Scholar 

  • Clancy KBH (2012) Inflammation, reproduction, and the Goldilocks Principle. In: Clancy K, Hinde K, Rutherford J (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Clifton VL, Rennie N, Murphy VE (2006) Effect of inhaled glucocorticoid treatment on placental 11β-hydroxysteroid dehydrogenase type 2 activity and neonatal birthweight in pregnancies complicated by asthma. Aust N Z J Obstet Gynaecol 46(2):136–140

    PubMed  Google Scholar 

  • Coan PM, Angiolini E, Sandovici I, Burton GJ, Constancia M, Fowden AL (2008) Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J Physiol 586(18):4567–4576

    PubMed  CAS  Google Scholar 

  • Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Constancia M, Fowden AL (2010) Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol 588(3):527–538

    PubMed  CAS  Google Scholar 

  • Collins JW, David RJ, Rankin KM, Desireddi JR (2009) Transgenerational effect of neighborhood poverty on low birth weight among African Americans in Cook County, Illinois. Am J Epidemiol 169(6):712–717

    PubMed  Google Scholar 

  • Coutinho R, David RJ, Collins JW (1997) Relation of parental birth weights to infant birth weight among African Americans and whites in Illinois. Am J Epidemiol 146(10)

    Google Scholar 

  • Crespi B, Semeniuk C (2004) Parent-offspring conflict in the evolution of vertebrate reproductive mode. Am Nat 163(5):635–653

    PubMed  Google Scholar 

  • Darwin E (1796) The laws of organic life. In: Schurig AT (ed) Zoonomia, 2nd edn. Project Gutenberg, London

    Google Scholar 

  • Das UG, Sadiq HF, Soares MJ, Hay WW, Devaskar SU (1998) Time-dependent physiological regulation of rodent and ovine placental glucose transporter (GLUT-1) protein. Am J Physiol Regul Integr Comp Physiol 274(2):R339–R347

    CAS  Google Scholar 

  • deKeyser N, Josefsson A, Bladh M, Carstensen J, Finnström O, Sydsjö G (2012) Premature birth and low birthweight are associated with a lower rate of reproduction in adulthood: a Swedish population-based registry study. Hum Reprod 27:1170–1178

    PubMed  CAS  Google Scholar 

  • Demetrio F (1969) Toward a classification of Bisayan folk beliefs and customs. Philippines Stud 17(1):3–39

    Google Scholar 

  • Desforges M, Lacey HA, Glazier JD, Greenwood SL, Mynett KJ, Speake PF, Sibley CP (2006) SNAT4 isoform of system A amino acid transporter is expressed in human placenta. Am J Physiol Cell Physiol 290:C305–C312

    PubMed  CAS  Google Scholar 

  • Dicke JM, Henderson GI (1988) Placental amino acid uptake in normal and complicated pregnancies. Am J Med Sci 295(3):223–227

    PubMed  CAS  Google Scholar 

  • Doherty CB, Lewis RM, Sharkey A, Burton GJ (2003) Placental composition and surface area but not vascularization are altered by maternal protein restriction in the rat. Placenta 24(1):34–38

    PubMed  Google Scholar 

  • Dufour DL, Sauther ML (2002) Comparative and evolutionary dimensions of the energetics of human pregnancy and lactation. Am J Hum Biol 14(5):584–602

    PubMed  CAS  Google Scholar 

  • Dunn PM (2003) Dr. Erasmus Darwin (1731–1802) of Lichfield and placental respiration. Arch Dis Child Fetal Neonatal Ed 88(4):F346–F348

    PubMed  CAS  Google Scholar 

  • Duttaroy AK (2009) Transport of fatty acids across the human placenta: a review. Prog Lipid Res 48(1):52–61

    PubMed  CAS  Google Scholar 

  • Egbor M, Ansari T, Morris N, Green CJ, Sibbons PD (2006) Pre-eclampsia and fetal growth restriction: how morphometrically different is the placenta? Placenta 27(6–7):727–734

    PubMed  CAS  Google Scholar 

  • Eriksson JG, Forsén T, Tuomilehto J, Osmond C, Barker DJP (2000) Fetal and childhood growth and hypertension in adult life. Hypertension 36(5):790–794

    PubMed  CAS  Google Scholar 

  • Forsen T, Eriksson JG, Tuomilehto J, Teramo K, Osmond C, Barker DJP (1997) Mother’s weight in pregnancy and coronary heart disease in a cohort of Finnish men: follow up study. Br Med J 315(7112):837–840

    CAS  Google Scholar 

  • Forsen T, Eriksson J, Tuomilehto J, Reunanen A, Osmond C, Barker D (2000) The fetal and childhood growth of persons who develop type 2 diabetes. Ann Intern Med 133:176–182

    PubMed  CAS  Google Scholar 

  • Fowden AL, Constancia M (2012) Proceedings of the 2011 Centre for Trophoblast Research Meeting, Cambridge (in press)

    Google Scholar 

  • Fowden AL, Forhead AJ (2009) Hormones as epigenetic signals in developmental programming. Exp Physiol 94(6):607–625

    PubMed  CAS  Google Scholar 

  • Fowden AL, Giussani DA, Forhead AJ (2005) Endocrine and metabolic programming during intrauterine development. Early Hum Dev 81(9):723–734

    PubMed  CAS  Google Scholar 

  • Fowden AL, Ward JW, Wooding FPB, Forhead AJ, Constancia M (2006) Programming placental nutrient transport capacity. J Physiol 572(1):5–15

    PubMed  CAS  Google Scholar 

  • Fowden AL, Sferruzzi-Perri A, Coan PM, Constancia M, Burton GJ (2009) Placental efficiency and adaptation: endocrine regulation. J Physiol 587(14):3459–3472

    PubMed  CAS  Google Scholar 

  • Gheorghe CP, Goyalm R, Mittal A, Longo LD (2010) Gene expression in the placenta: maternal stress and epigenetic responses. Int J Dev Biol 54(2–3):507–523

    PubMed  CAS  Google Scholar 

  • Gluckman PD, Hanson M (2006) Why our world no longer fits our bodies. Oxford University Press, New York

    Google Scholar 

  • Gluckman PD, Hanson M, Spencer H (2005) Predictive adaptive responses and human evolution. Trends Ecol Evol 20(10):527–533

    PubMed  Google Scholar 

  • Godfrey KM (2002) The role of the placenta in fetal programming—a review. Placenta 23(Suppl 1):S20–S27

    PubMed  Google Scholar 

  • Grosser O (1909) Vergleichende Anatomie und Entwicklungsgeschichte der Eihäute und der Placenta. Wilhelm Braumüller, Vienna

    Google Scholar 

  • Grosser O (1927) Frugehntwicklung, Eihautbildung, und Placentation des Menschen und der Saugetiere. Bergman, Munich

    Google Scholar 

  • Haggarty P (2002) Placental regulation of fatty acid delivery and its effect on fetal growth—a review. Placenta 23(Suppl 1):S28–S38

    PubMed  Google Scholar 

  • Haggarty P, Ashton J, Joynson M, Abramovich DR, Page K (1999) Effect of maternal polyunsaturated fatty acid concentration on transport by the human placenta. Biol Neonate 75(6):350–359

    PubMed  CAS  Google Scholar 

  • Hahn T, Hartman M, Blaschitz A, Skofitsch G, Graf R, Dohr G, Desoye G (1995) Localisation of the high affinity facilitative glucose transporter protein GLUT 1 in the placenta of human, marmoset monkey (Callithrix jacchus) and a rat at different developmental stages. Cell Tissue Res 280:49–57

    PubMed  CAS  Google Scholar 

  • Haig D (1996) Placental hormones, genomic imprinting, and maternal-fetal communication. J Evol Biol 9(3):357–380

    CAS  Google Scholar 

  • Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B (2008) Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr 27(5):685–693

    PubMed  CAS  Google Scholar 

  • Harris LK (2010) Review: trophoblast-vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta 31(Suppl 0):S93–S98

    PubMed  Google Scholar 

  • Hay WW (1991a) The placenta: not just a conduit of maternal fuel. Diabetologia 40(Suppl 2):44–50

    Google Scholar 

  • Hay WW (1991b) The role of placental-fetal interaction in fetal nutrition. Semin Perinatol 15(6):424–433

    PubMed  Google Scholar 

  • Helland I, Smith L, Saarem K, Saugstad OD, Drevon CA (2003) Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IG at 4 years of age. Pediatrics 111(1):E39–E44

    PubMed  Google Scholar 

  • Herrera E (2002) Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—a review. Placenta 23(Suppl 1):S9–S19

    PubMed  Google Scholar 

  • Hoffman L, Mandel TE, Carter WM, Koulmanda M, Martin FI (1982) Insulin secretion by fetal human pancreas in organ culture. Diabetologia 23(5):426–430

    PubMed  CAS  Google Scholar 

  • Hustin J, Schaaps JP (1987) Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 157(1):162–168

    PubMed  CAS  Google Scholar 

  • Ibañez L, Potau N, Enriquez G, de Zegher F (2000) Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res 47(5):575–577

    PubMed  Google Scholar 

  • Ibañez L, Potau N, Enriquez G, Marcos MV, deZegher F (2003) Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum Reprod 18(8):1565–1569

    PubMed  Google Scholar 

  • Illsley NP (2000) Glucose transporters in the human placenta. Placenta 21:14–22

    PubMed  CAS  Google Scholar 

  • Innis SM (2007) Dietary (n-3) fatty acids and brain development. J Nutr 137(4):855–859

    PubMed  CAS  Google Scholar 

  • Jansson T (2001) Amino acid transporters in the human placenta. Pediatr Res 49(2):141–147

    PubMed  CAS  Google Scholar 

  • Jansson T, Powell TL (2006) Human placental transport in altered fetal growth: does the placenta function as a nutrient sensor?–a review. Placenta 27(Suppl A):S91–S97

    PubMed  Google Scholar 

  • Jansson T, Powell TL (2007) Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci 113(1):1–13

    PubMed  CAS  Google Scholar 

  • Jansson T, Powell TL (2011) Placental amino acid transporters: the critical link between maternal nutrition and fetal programming? In: Burton GJ, Barker DJP, Moffett A (eds) The Placenta and Human Developmental Programming. Cambridge University Press, New York, pp 147–160

    Google Scholar 

  • Jansson T, Ylvén K, Wennergren M, Powell TL (2002) Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 23(5):392–399

    PubMed  CAS  Google Scholar 

  • Jansson T, Cetin I, Powell TL, Desoye G, Radaelli T, Ericsson A, Sibley CP (2006) Placental transport and metabolism in fetal overgrowth—a workshop report. Placenta 27(Suppl A):S109–S119

    PubMed  Google Scholar 

  • Jaquish CE, Gage TB, Tardif SD (1991) Reproductive factors affecting survivorship in captive callitrichidae. Am J Phys Anthropol 84(3):291–305

    PubMed  CAS  Google Scholar 

  • Jauniaux E, Hempstock J, Greenwold N, Burton GJ (2003) Trophoblastic oxidative stress in relation to temporal and regional differences in maternal placental blood flow in normal and abnormal early pregnancies. Am J Pathol 162(1):115–125

    PubMed  Google Scholar 

  • Johnson LW, Smith CH (1988) Neutral amino acid transport systems of microvillous membrane of human placenta. Am J Physiol Cell Physiol 254(6):C773–C780

    CAS  Google Scholar 

  • Kelly RW (1992) Nutrition and placental development. Proc Natl Acad Sci USA 17:203–210

    Google Scholar 

  • Kliman HJ (2000) Uteroplacental blood flow: the story of decidualization, menstruation, and trophoblast invasion. Am J Pathol 157(6):1759–1768

    PubMed  CAS  Google Scholar 

  • Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JCP (1996) Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175(6): 1534–1542

    PubMed  CAS  Google Scholar 

  • Kulhanek JF, Meschia G, Makowski EL, Battaglia FC (1974) Changes in DNA content and urea permeability of the sheep placenta. Am J Physiol Legacy Content 226(5):1257–1263

    CAS  Google Scholar 

  • Kuzawa CW (2005) Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am J Hum Biol 17(1):5–21

    PubMed  Google Scholar 

  • Langley-Evans SC, Phillips GJ, Benediktsson R, Gardner DS, Edwards CRW, Jackson AA, Seckl JR (1996) Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta 17(2–3):169–172

    PubMed  CAS  Google Scholar 

  • Law CM, Barker DJP, Bull AR, Osmond C (1991) Maternal and fetal influences on blood pressure. Arch Dis Child 66:1291–1295

    PubMed  CAS  Google Scholar 

  • Leaf AA, Leighfield MJ, Costeloe KL, Crawford MA (1992) Long chain polyunsaturated fatty acids and fetal growth. Early Hum Dev 30(3):183–191

    PubMed  CAS  Google Scholar 

  • Lesage J, Hahn D, Leonhardt M, Blondeau B, Breant B, Dupouy JP (2002) Maternal undernutrition during late gestation-induced intrauterine growth restriction in the rat is associated with impaired placental GLUT-3 expression, but does not correlate with endogenous corticosterone levels. J Endocrinol 174(1):37–43

    PubMed  CAS  Google Scholar 

  • Longtine MS, Nelson DM (2011) Placental dysfunction and fetal programming: the importance of placental size, shape, histopathology, and molecular composition. Semin Reprod Med 29(3):187–196

    PubMed  Google Scholar 

  • Luckett WP (1974) Comparative development and evolution in the placenta in primates. In: Contributions in Primatology, W.P. Luckett ed., S. Karger, Basel 3:142–234

    Google Scholar 

  • Luckett WP (1976) Cladistic relationships among primate higher categories: evidence of the fetal membranes and placenta. Folia Primatol 25(4):245–276

    PubMed  CAS  Google Scholar 

  • Lumey LH (1998) Compensatory placental growth after restricted maternal nutrition in early pregnancy. Placenta 19(1):105–111

    PubMed  CAS  Google Scholar 

  • Lumey LH, Stein AD (1997) Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol 146(10):810–819

    PubMed  CAS  Google Scholar 

  • Mackenzie HS, Brenner BM (1995) Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am J Kidney Dis 26(1):91–98

    PubMed  CAS  Google Scholar 

  • Mahendran D, Donnai PP, Boyd RD, Sibley CP (1993) Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr Res 34(5):661–665

    PubMed  CAS  Google Scholar 

  • Martin RD, MacLarnon AM (1990) Reproductive patterns in primates and other mammals: the dichotomy between altricial and precocial offspring. In: De Rousseau CJ (ed) Primate life history and evolution. Wiley-Liss, New York, pp 47–79

    Google Scholar 

  • Martyn CN, Barker DJP, Osmond C (1996) Mothers’ pelvic size, fetal growth, and death from stroke and coronary heart disease in men in the UK. Lancet 348(9037):1264–1268

    PubMed  CAS  Google Scholar 

  • Mayhew TM, Jairam IC (2000) Stereological comparison of 3D spatial relationships involving villi and intervillous pores in human placentas from control and diabetic pregnancies. J Anat 197(Part 2):263–274

    PubMed  Google Scholar 

  • Mayhew TM, Jackson MR, Boyd PA (1993) Changes in oxygen diffusive conductances of human placentae during gestation (10–41 weeks) are commensurate with the gain in fetal weight. Placenta 14(1):51–61

    PubMed  CAS  Google Scholar 

  • Mayhew TM, Ohadike C, Baker PN, Crocker IP, Mitchell C, Ong SS (2003) Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 24(2–3):219–226

    PubMed  CAS  Google Scholar 

  • McMullen S, Osgerby JC, Thurston LM, Gadd TS, Wood PJ, Wathes DC, Michael AE (2004) Alterations in placental 11β-hydroxysteroid dehydrogenase (11βHSD) activities and fetal cortisol:cortisone ratios induced by nutritional restriction prior to conception and at defined stages of gestation in ewes. Reproduction 127(6):717–725

    PubMed  CAS  Google Scholar 

  • McWhorter WP, Polis MA, Kaslow RA (1989) Occurrence, predictors, and consequences of adult asthma in NHANESI and follow-up survey. Am J Respir Crit Care Med 139(3):721–724

    CAS  Google Scholar 

  • Merker H-J, Bremer D, Csato W, Heger W, Gossrau R (1988) Development of the marmoset ­placenta. Ueberreuther Wissenschaft, Berlin

    Google Scholar 

  • Meschia G, Battaglia FC, Hay WW, Sparks JW (1980) Utilization of substrates by the ovine ­placenta in vivo. Fed Proc 39:245–249

    PubMed  CAS  Google Scholar 

  • Mesiano S, Jaffe RB (1997) Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev 18(3):378–403

    PubMed  CAS  Google Scholar 

  • Mess A, Carter AM (2007) Evolution of the placenta during the early radiation of placental ­mammals. Comp Biochem Physiol A Mol Integr Physiol 148(4):769–779

    PubMed  Google Scholar 

  • Milligan LA (2012) Do bigger brains mean better milk? In: Clancy K, Hinde K, Rutherford J (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • Moore VM, Cockington RA, Ryan P, Robinson JS (1999) The relationship between birth weight and blood pressure amplifies from childhood to adulthood. J Hypertens 17:883–888

    PubMed  CAS  Google Scholar 

  • Moore VM, Miller AG, Boulton TJC, Cockington RA, Hamilton Craig I, Magarey AM, Robinson JS (1996) Placental weight, birth measurements, and blood pressure at age 8 years. Arch Dis Child 74:538–541

    PubMed  CAS  Google Scholar 

  • Mossman HW (1937) Comparative morphogenesis of the fetal membranes and accessory uterine structures. Carnegie Inst Contrib Embryol 26:129–246

    Google Scholar 

  • Mossman HW (1987) Vertebrate fetal membranes. Rutgers University Press, New Brunswick

    Google Scholar 

  • Murphy VE, Smith R, Giles WB, Clifton VL (2006) Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev 27(2):141–169

    PubMed  Google Scholar 

  • Myatt L (2006) Placental adaptive responses and fetal programming. J Physiol 572(1):25–30

    PubMed  CAS  Google Scholar 

  • Navarrete A, van Schaik CP, Isler K (2011) Energetics and the evolution of human brain size. Nature 480(7375):91–93

    PubMed  CAS  Google Scholar 

  • Nelson DM, Smith SD, Furesz TC, Sadovsky Y, Ganapathy V, Parvin CA, Smith CH (2003) Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. Am J Physiol Cell Physiol 248(2):C310–C315

    Google Scholar 

  • Nyberg C (2012) Navigating transitions in HPA function from pregnancy to lactation: implications for maternal health and infant brain development. In: Clancy K, Hinde K, Rutherford J (eds) Building babies: primate development in proximate and ultimate perspectives. Springer, New York

    Google Scholar 

  • O’Regan D, Kenyon CJ, Seckl JR, Holmes MC (2004) Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab 287(5):E863–E870

    PubMed  Google Scholar 

  • Oliver MH, Hawkins P, Harding JE (2005) Periconceptional undernutrition alters growth trajectory and metabolic and endocrine responses to fasting in late-gestation fetal sheep. Pediatr Res 57(4):591–598

    PubMed  Google Scholar 

  • Osgerby JC, Wathes DC, Howard D, Gadd TS (2002) The effect of maternal undernutrition on ovine fetal growth. J Endocrinol 173(1):131–141

    PubMed  CAS  Google Scholar 

  • Owens JA (1991) Endocrine and substrate control of fetal growth: placental and maternal influences and insulin-like growth factors. Reprod Fertil Dev 3(5):501–517

    PubMed  CAS  Google Scholar 

  • Pepe GJ, Albrecht ED (1995) Actions of placental and fetal adrenal steroid hormones in primate pregnancy. Endocr Rev 16(5):608–648

    PubMed  CAS  Google Scholar 

  • Pepe G, Burch M, Albrecht E (1999) Expression of the 11beta-hydroxysteroid dehydrogenase types 1 and 2 proteins in human and baboon placental syncytiotrophoblast. Placenta 20(7): 575–582

    PubMed  CAS  Google Scholar 

  • Petraglia F, Florio P, Vale WW (2005) Placental expression of neurohormones and other neuroactive molecules in human pregnancy. In: Power M, Schulkin J (eds) Birth, distress and disease: placenta-brain interactions. Cambridge University Press, Cambridge, pp 16–73

    Google Scholar 

  • Phipps K, Barker DJP, Hales CN, Fall C, Osmond C, Clark P (1993) Fetal growth and impaired glucose tolerance in men and women. Diabetologia 36(3):225–228

    PubMed  CAS  Google Scholar 

  • Pond WG, Maurer RR, Klindt J (1991) Fetal organ response to maternal protein-deprivation during pregnancy in swine. J Nutr 121(4):504–509

    PubMed  CAS  Google Scholar 

  • Ramakrishnan U, Martorell R, Schroeder DG, Flores R (1999) Role of intergenerational effects on linear growth. J Nutr 129:544–549

    Google Scholar 

  • Redmer DA, Wallace JM, Reynolds LP (2004) Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domest Anim Endocrinol 27(3):199–271

    PubMed  CAS  Google Scholar 

  • Regnault TRH, Galan HL, Parker TA, Anthony RV (2002) Placental development in normal and compromised pregnancies—a review. Placenta 23(Suppl A):S119–S129

    PubMed  Google Scholar 

  • Reisbick S, Neuringer M, Hasnain R, Connor WE (1994) Home cage behavior of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol Behav 55:231–239

    PubMed  CAS  Google Scholar 

  • Roberts CT, Sohlstrom A, Kind KL, Earl RA, Khong TY, Robinson JS, Owens PC, Owens JA (2001) Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. Placenta 22(2–3):177–185

    PubMed  CAS  Google Scholar 

  • Robinson JS, Owens JA, Owens PC (1994) Fetal growth and fetal growth retardation. In: Thorbun G, Harding R (eds) Textbook of fetal physiology. Oxford University Press, Oxford, pp 83–94

    Google Scholar 

  • Rutherford JN (2009) Fetal signaling through placental structure and endocrine function: illustrations and implications from a nonhuman primate model. Am J Hum Biol 21(6):745–753

    PubMed  Google Scholar 

  • Rutherford JN (2012) Toward a nonhuman primate model of fetal programming: phenotypic ­plasticity of the common marmoset fetoplacental complex. Placenta (in press)

    Google Scholar 

  • Rutherford JN, Tardif SD (2008) Placental efficiency and intrauterine resource allocation ­strategies in the common marmoset pregnancy. Am J Phys Anthropol 137(1):60–68

    PubMed  Google Scholar 

  • Rutherford JN, Tardif SD (2009) Developmental plasticity of the microscopic placental architecture in relation to litter size variation in the common marmoset monkey (Callithrix jacchus). Placenta 30:105–110

    PubMed  CAS  Google Scholar 

  • Rutherford JN, Hurley P, Lawrence MS, Redmond DE Jr (2010) Fetoplacental growth dynamics in the vervet monkey (Chlorocebus aethiops). Placenta 31(9):A29

    Google Scholar 

  • Rutherford JN, DeMartelly VA, Ross CN, Tardif SD (2012) Developmental programming of ­pregnancy loss in a nonhuman primate (under review)

    Google Scholar 

  • Rutherford JN, Abrams ET, Said SJ (2012) Developing the brain: a potential role for the placenta in hominin brain evolution. Am J Phys Anthropol 147(S54)

    Google Scholar 

  • Sadiq HF, Das UG, Tracy TF, Devaskar SU (1999) Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters. Brain Res 823(1–2):96–103

    PubMed  CAS  Google Scholar 

  • Sastry BV (1991) Placental toxicology: tobacco smoke, abused drugs, multiple chemical interactions, and placental function. Reprod Fertil Dev 3(4):255–372

    Google Scholar 

  • Schaaps JP (1988) In vivo aspect of the maternal-trophoblastic border during the first trimester of gestation. Trophoblast 3:39–48

    Google Scholar 

  • Schlabritz-Loutsevitch N, Ballesteros B, Dudley C, Jenkins S, Hubbard G, Burton GJ, Nathanielsz PW (2007) Moderate maternal nutrient restriction, but not glucocorticoid administration, leads to placental morphological changes in the baboon (Papio sp.). Placenta 28:783–793

    PubMed  CAS  Google Scholar 

  • Schneiderman JU (1998) Rituals of placenta disposal. Am J Matern Child Nurs 23(3):142–143

    CAS  Google Scholar 

  • Seckl JR (2008) Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. Prog Brain Res 167:17–34

    PubMed  CAS  Google Scholar 

  • Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CAR, D’Souza SW, Glazier JD, Greenwood SL, Jansson T, Powell TL (2005) Placental phenotypes of intrauterine growth. Pediatr Res 58(5):827–832

    PubMed  Google Scholar 

  • Simmons RA, Gounis AS, Bangalore SA, Ogata ES (1992) Intrauterine growth retardation: fetal glucose transport is diminished in lung but spared in brain. Pediatr Res 31(1):59–63

    PubMed  CAS  Google Scholar 

  • Smith CA (1947) Effects of maternal undernutrition upon the newborn infant in Holland (1944–1945). J Pediatr 30(3):229–243

    PubMed  CAS  Google Scholar 

  • Stein ZA, Susser M (1975) The Dutch famine, 1944-1945, and the reproductive process. I. Effects on six indices at birth. Pediatr Res 9(2):70–76

    PubMed  CAS  Google Scholar 

  • Stein AD, Ravelli ACJ, Lumey LH (1995) Famine, third-trimester pregnancy weight gain, and intrauterine growth: the Dutch famine birth cohort study. Hum Biol 67:135–150

    PubMed  CAS  Google Scholar 

  • Sterner K, Jameson N, Wildman D (2012) Placental development, evolution, and epigenetics of primate pregnancies. Springer, New York

    Google Scholar 

  • Stulc J (1997) Placental transfer of inorganic ions and water. Physiol Rev 77(3):805–836

    PubMed  CAS  Google Scholar 

  • Sturman JA (1988) Taurine in development. J Nutr 118(10):1169–1176

    PubMed  CAS  Google Scholar 

  • Tanner JM (1989) Fetus into man: physical growth from conception to maturity, 2nd edn. Harvard University Press, Cambridge

    Google Scholar 

  • Tardif SD, Bales KL (2004) Relations among birth condition, maternal condition, and postnatal growth in captive common marmoset monkeys (Callithrix jacchus). Am J Primatol 62(2):83–94

    PubMed  Google Scholar 

  • Taylor SJC, Whincup PH, Cook DG, Papacosta O, Walker M (1997) Size at birth and blood pressure: cross sectional study in 8–11 year old children. Br Med J 314(7079):475

    CAS  Google Scholar 

  • Thame M, Osmond C, Wilks RJ, Bennett FI, McFarlane-Anderson N, Forrester TE (2000) Blood pressure is related to placental volume and birth weight. Hypertension 35:662–667

    PubMed  CAS  Google Scholar 

  • Turner WM (1876) On the structure of the diffused, the polycotyledonary and the zonary forms of placenta. J Anat Physiol 10:127–177

    Google Scholar 

  • Tuuli MG, Odibo AO (2011) The role of serum markers and uterine artery doppler in identifying at-risk pregnancies. Clin Perinatol 38(1):1–19

    PubMed  Google Scholar 

  • Tycko B, Efstratiadis A (2002) Genomic imprinting: piece of cake. Nature 417(6892):913–914

    PubMed  CAS  Google Scholar 

  • Uno H, Lohmiller L, Thieme C, Kemnitz JW, Engle MJ, Roecker EB, Farrell PM (1990) Brain damage induced by prenatal exposure to dexamethasone in fetal rhesus macaques. I. Hippocampus. Dev Brain Res 53(2):157–167

    CAS  Google Scholar 

  • van Woerden J, Willems EP, van Schaik CP, Isler K (2012) Large brains buffer energetic effects of seasonal habitats in catarrhine primates. Evolution 66(1):191–199

    PubMed  Google Scholar 

  • Vaughan OR, Forhead AJ, Fowden AL (2011) Glucocorticoids and placental programming. In: Burton GJ, Barker DJP, Moffett A (eds) The Placenta and Human Developmental Programming. Cambridge University Press, Cambridge

    Google Scholar 

  • Vuguin PM (2007) Animal models for small for gestational age and fetal programing of adult disease. Horm Res 68:113–123

    PubMed  CAS  Google Scholar 

  • Wislocki GB (1929) On the placentation of primates, with a consideration of the phylogeny of the placenta. Carnegie Inst Contrib Embryol 20:51

    Google Scholar 

  • Woodall SM, Breier BH, Johnston BM, Gluckman PD (1996) A model of intrauterine growth retardation caused by chronic maternal undernutrition in the rat: effects on the somatotrophic axis and postnatal growth. J Endocrinol 150(2):231–242

    PubMed  CAS  Google Scholar 

  • Wooding P, Burton GJ (2008) Comparative placentation. Springer, Heidelberg

    Google Scholar 

  • Zamudio S (2003) The placenta at high altitude. High Alt Med Biol 4(2):171–191

    PubMed  Google Scholar 

  • Zamudio S, Baumann MU, Illsley NP (2006) Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters. Placenta 27(1):49–55

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Kate Clancy, Katie Hinde, and three anonymous reviewers for their sensible and thought-provoking suggestions. This work would not have been possible without the rich intellectual engagement and collegiality of Robert Martin, Suzette Tardif, Corinna Ross, Donna Layne Colon, and Elizabeth Abrams. Thanks especially to Victoria DeMartelly for her patient endnote wrangling. Thanks to Meredith Kachel for drawing Fig. 2.3. During the writing of this chapter I was generously supported by the National Institutes of Health Building Interdisciplinary Research Careers in Women’s Health program at the University of Illinois at Chicago (K12HD055892). Finally, I am deeply grateful to the strong and brilliant women in my life who inspire my work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julienne N. Rutherford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rutherford, J.N. (2013). The Primate Placenta as an Agent of Developmental and Health Trajectories Across the Life Course. In: Clancy, K., Hinde, K., Rutherford, J. (eds) Building Babies. Developments in Primatology: Progress and Prospects, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4060-4_2

Download citation

Publish with us

Policies and ethics