Skip to main content

Infant Gut Microbiota: Developmental Influences and Health Outcomes

  • Chapter
  • First Online:
Building Babies

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR,volume 37))

Abstract

Primates harbor diverse communities of gut bacteria that enhance host energy extraction, regulate metabolism and energy storage, protect against pathogens, and modulate immune responses. The Dynamic host-gut bacterial relationship begins at birth, when maternal and environmental bacteria colonize sterile infant GI Tracts. Host diet and exposure to environmental and pathogenic bacteria continue to influence gut microbial composition through infancy and beyond. During infancy, breast milk promotes the establishment and growth beneficial bacteria through both direct transmission and multiple biochemical and immunological factors. The development and integrity of gut microbial communities during infancy may have implications for primate developmental trajectories after weaning, particularly in relation to metabolic and immune functioning later in life

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98:229–238

    PubMed  CAS  Google Scholar 

  • Adlerberth I, Lindberg E, Ã…berg N, Hesselmar B, Saalman R, StrannegÃ¥rd IL, Wold AE (2006) Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res 59:96–101

    PubMed  Google Scholar 

  • Andersson AF, Lindberg M, Jakobsson H, Bäckhed F, Nyrén P, Engstrand L (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836

    PubMed  Google Scholar 

  • Are A, Aronsson L, Wang S, Greicius G, Lee YK, Gustafsson J, Pettersson S, Arulampalam V (2008) Enterococcus faecalis from newborn babies regulate endogenous PPAR activity and IL-10 levels in colonic epithelial cells. Proc Natl Acad Sci 105:1943–1948

    PubMed  CAS  Google Scholar 

  • Armstrong EF, Eastwood MA, Edwards CA, Brydon WG, MacIntyre CCA (1992) The effect of weaning diet on the subsequent colonic metabolism of dietary fibre in the adult rat. Br J Nutr 68:741–751

    PubMed  CAS  Google Scholar 

  • Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci 101:15718–15723

    PubMed  Google Scholar 

  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920

    PubMed  Google Scholar 

  • Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155

    PubMed  CAS  Google Scholar 

  • Balamurugan R, Janardhan HP, George S, Chittaranjan SP, Ramakrishna BS (2008) Bacterial succession in the colon during childhood and adolescence: molecular studies in a southern Indian village. Am J Clin Nutr 88:1643–1647

    PubMed  CAS  Google Scholar 

  • Balmer SE, Wharton BA (1989) Diet and faecal flora in the newborn: breast milk and infant formula. Br Med J 64:1672

    CAS  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo MET (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    PubMed  CAS  Google Scholar 

  • Benno Y, Sawada K, Mitsuoka T (1984) The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol Immunol 28:975

    PubMed  CAS  Google Scholar 

  • Bentley R, Meganathan R (1982) Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Mol Biol Rev 46:241–280

    CAS  Google Scholar 

  • Blaser MJ (2006) Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep 7:956–960

    PubMed  CAS  Google Scholar 

  • Bongers A, van den Heuvel EGHM (2003) Prebiotics and the bioavailability of minerals and trace elements. Food Rev Int 19(4):397–422

    CAS  Google Scholar 

  • Canny GO, McCormick BA (2008) Bacteria in the intestine, helpful residents or enemies from within? Infect Immunol 76:3360–3373

    CAS  Google Scholar 

  • Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, Pickering LK, Newburg DS (2001) Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11:365

    PubMed  CAS  Google Scholar 

  • Ciarlet M, Crawford SE, Estes MK (2001) Differential infection of polarized epithelial cell lines by sialic acid-dependent and sialic acid-independent rotavirus strains. J Virol 75: 11834–11850

    PubMed  CAS  Google Scholar 

  • Collins SM, Berick P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci 107:14691–14696

    PubMed  Google Scholar 

  • Deshpande G, Rao S, Patole S, Bulsara M (2010) Updated meta-analysis of probiotics for preventing necrotizing enterocolitis in preterm neonates. Pediatrics 125:921–930

    PubMed  Google Scholar 

  • Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523

    PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    PubMed  Google Scholar 

  • Díaz Ropero MP, Martín R, Sierra S, Lara Villoslada F, Rodríguez JM, Xaus J, Olivares M (2007) Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol 102:337–343

    PubMed  Google Scholar 

  • Dimmitt RA, Staley EM, Chuang G, Tanner SM, Soltau TD, Lorenz RG (2010) Role of Postnatal Acquisition of the intestinal microbiome in the early development of immune function. J Pediatr Gastroenterol Nutr 51:262–273

    PubMed  CAS  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635

    PubMed  Google Scholar 

  • Edwards CA, Parrett AM (2002) Intestinal flora during the first months of life: new perspectives. Br J Nutr 88:11–18

    Google Scholar 

  • Edwards CA, Parrett AM, Balmer SE, Wharton BA (1994) Faecal short chain fatty acids in breast-fed and formula-fed babies. Acta Paediatr 83:459–462

    PubMed  CAS  Google Scholar 

  • Ellison RT (1991) Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest 88:1080–1091

    PubMed  CAS  Google Scholar 

  • Ell-Mohandes AE, Keiser JF, Johnson LA, Refat M, Jackson BJ (1993) Aerobes isolated in fecal microflora of infants in the intensive care nursery: relationship to human milk use and systemic sepsis. Am J Infect Control 21:231–234

    Google Scholar 

  • Fallani M, Amarri S, Uusijarvi A, Adam R, Khanna S, Aguilera M, Gil A, Vietes JM, Norin E, Young D, Scott JA, Doré J, Edwards CA (2011) Determinants of the human infant intestinal microbiota alfer the introduction of first complementary foods in infant samples from five European countries. Microbiology 157:1385–1392

    PubMed  CAS  Google Scholar 

  • Fanaro S, Chierici R, Guerrini P, Vigi V (2003) Intestinal microflora in early infancy: composition and development. Acta Paediatr 92:48–55

    Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM, Akkermans ADL (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226

    PubMed  CAS  Google Scholar 

  • Forchielli ML, Walker WA (2005) The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 93:41–48

    Google Scholar 

  • Gewolb IH, Schwalbe RS, Taciak VL, Harrison TS, Panigrahi P (1999) Stool microflora in extremely low birthweight infants. Br Med J 80:167–173

    Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    PubMed  CAS  Google Scholar 

  • Gnoth MJ, Kunz C, Kine-Saffran E, Rudloff S (2000) Human milk oligosaccharides are minimally digested in vitro. J Nutr 130:3014–3210

    PubMed  CAS  Google Scholar 

  • Goldman AS (1993) The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr Infect Dis J 12:664–672

    PubMed  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    PubMed  Google Scholar 

  • Guggenbichler JP, De Bettignies-Dutz A, Meissner P, Schellmoser S, Jurenitsch J (1997) Acidic oligosaccharides from natural sources block adherence of Eschericha coli on uroepithelial cells. Pharmaceut Pharmacol Lett 7:35–38

    CAS  Google Scholar 

  • Hamosh M (2001) Bioactive factors in human milk. Pediatr Clin North Am 48:69–86

    PubMed  CAS  Google Scholar 

  • Harmsen HJM, Wildeboer-Veloo A, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    PubMed  CAS  Google Scholar 

  • Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22:283–307

    PubMed  CAS  Google Scholar 

  • Hopkins MJ, Sharp R, Macfarlane GT (2002) Variation in human intestinal microbiota with age. Dig Liver Dis 34:S12–S18

    PubMed  Google Scholar 

  • Hrncir T, Stepankova R, Kozakova H, Hudcovic T, Tlaskalova-Hogenova H (2008) Gut microbiota and lipopolysaccharide content of the diet influence development of regulatory T cells: studies in germ-free mice. BMC Immunol 9:65

    PubMed  Google Scholar 

  • Jernberg C, Löfmark S, Edlund C, Jansson JK (2007) Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J 1:56–66

    PubMed  CAS  Google Scholar 

  • Jin L, Hinde K, Tao L (2011) Species diversity and relative abundance of lactic acid bacteria in the milk of rhesus monkeys (Macaca mulatta). J Med Primatol 40:52–58

    PubMed  CAS  Google Scholar 

  • Kaiko GE, Horvat JC, Beagley KW, Hansbro PM (2008) Immunological decision making: how does the immune system decide to mount a helper T cell response? Immunology 123:326–338

    PubMed  CAS  Google Scholar 

  • Kalliomäki M, Isolauri E (2003) Role of intestinal flora in the development of allergy. Curr Opin Allergy Clin Immunol 3:15–20

    PubMed  Google Scholar 

  • Katayama T, Fujita K, Yamamoto K (2005) Novel Bifidobacteriuml glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Eng 99:457–465

    CAS  Google Scholar 

  • Kleessen B, Bunke H, Tovar K, Noack J, Sawatzki G (1995) Influence of two infant formulas and human milk on the development of the faecal flora in newborn infants. Acta Paediatr 84:1347–1356

    PubMed  CAS  Google Scholar 

  • Kunz C, Rudloff S (2006) Health promoting aspects of milk oligosaccharides. Int Dairy J 16:1341–1346

    CAS  Google Scholar 

  • Lawrence RM, Pane CA (2007) Human breast milk: current concepts of immunology and infectious diseases. Curr Probl Pediatr Adolesc Health Care 37:7–36

    PubMed  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006a) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848

    PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006b) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    PubMed  CAS  Google Scholar 

  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nature 6:776–788

    CAS  Google Scholar 

  • MacDonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920

    PubMed  CAS  Google Scholar 

  • Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485

    PubMed  CAS  Google Scholar 

  • Magne F, Hachelaf W, Suau A, Boudraa G, Mangin I, Touhami M, Bouziane-Nedjadi K, Pochart P (2006) A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol 58:563–571

    PubMed  CAS  Google Scholar 

  • Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M, Guigo R, Knight R, Guarner F (2010) Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 20:1411–1419

    PubMed  CAS  Google Scholar 

  • Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, Mills DA (2010) Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 58:5334–5340

    PubMed  CAS  Google Scholar 

  • Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939

    PubMed  CAS  Google Scholar 

  • Martín R, Langa S, Reviriego C, Jimínez E, Marín ML, Xaus J, Fernández L, Marín M, Zoetendal EG, Rodríguez JM (2003) Human milk is a source of lactic acid bacteria for the infant gut. The J Pediatr 143(6):754–758

    Google Scholar 

  • Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Olivares M, Boza J, Jimenez J, Fernández L, Xaus J (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15:121–127

    Google Scholar 

  • Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, Rodríguez JM (2009) Isolation of Bifidobacterium from breast milk and assessment of the Bifidobacteriuml population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969

    PubMed  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12:5–9

    PubMed  CAS  Google Scholar 

  • Matsuki T, Watanabe K, Tanaka R, Fukuda M, Oyaizu H (1999) Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506

    PubMed  CAS  Google Scholar 

  • Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    PubMed  CAS  Google Scholar 

  • McClellan HL, Miller SJ, Hartmann PE (2008) Evolution of lactation: nutrition v. protection with special reference to five mammalian species. Nutr Res Rev 21:97–116

    PubMed  CAS  Google Scholar 

  • McKenna P, Hoffman C, Minkah N, Aye PP, Lackner A, Liu Z, Lozupone CA, Hamady M, Knight R, Bushman FD (2008) The macaque gut microbiome in health, lentiviral infection, and chronic enterocolitis. PLoS Pathog 4:e20

    PubMed  Google Scholar 

  • Neu J, Lorca G, Kingma SDK, Triplett EW (2010) The intestinal microbiome: relationship to type 1 diabetes. Endocrinol Metab Clin North Am 39:563–571

    PubMed  CAS  Google Scholar 

  • Neufeld KM, Kang N, Bienenstock J, Foster JA (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264

    PubMed  CAS  Google Scholar 

  • Newburg DS (1996) Oligosaccharides and Glycoconjugates in Human Milk: Their Role in Host Defense. Journal of Mammary Gland Biology and Neplasia 1(3):271–283

    PubMed  CAS  Google Scholar 

  • Newburg DS (1997) Do the binding properties of oligosaccharides in milk protect human infants from gastrointestinal bacteria? J Nutr 127:980S–984S

    PubMed  CAS  Google Scholar 

  • Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Meinzen-Derr J, Guerrero MDL, Morrow AL (2004) Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breast-fed infants. Glycobiology 14:253–263

    PubMed  CAS  Google Scholar 

  • Newburg DS, Walker WA (2007) Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res 61(1):2–8

    PubMed  CAS  Google Scholar 

  • Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, Killeen K, Grimm R (2006) A strategy for annotating the human milk glycome. J Agric Food Chem 54:7471–7480

    PubMed  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568

    PubMed  CAS  Google Scholar 

  • O’Mahony C, Scully P, O’Mahony D, Murphy S, O’Brien F, Lyons A, Sherlock G, MacSharry J, Kiely B, Shanahan F et al (2008) Commensal-induced regulatory T cells nediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog 4:e1000112

    PubMed  Google Scholar 

  • Obermeyer CM, Castle S (1996) Back to nature? Historical and cross-cultural perspectives on barriers to optimal breastfeeding. Med Anthropol 17:39–63

    PubMed  CAS  Google Scholar 

  • Owen CG, Martin RM, Whincup PH, Davey Smith G, Cook DG (2005) Effect of infant feeding on the risk of obesity across the life course: a quantitative review of published evidence. Pediatrics 115:1367–1377

    PubMed  Google Scholar 

  • Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    PubMed  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511

    PubMed  Google Scholar 

  • Penders J, Thijs C, Van Den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, Van Ree R, Stobberingh EE (2007) Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut 56:661–667

    PubMed  CAS  Google Scholar 

  • Petschow BW, Talbott RD, Batema RP (1999) Ability of lactoferrin to promote the growth of Bifidobacterium spp. in vitro is independent of receptor binding capacity and iron saturation level. J Med Microbiol 48:541–549

    PubMed  CAS  Google Scholar 

  • Prentice A, Prentice AM, Cole TJ, Whitehead RG (1983) Determinants of variations in breast milk protective factor concentrations of rural Gambian mothers. Br Med J 58:518–522

    CAS  Google Scholar 

  • Prentice A, Am Prentice TC, Paul A, Whitehead RG (1984) Breast-milk antimicrobial factors of rural gambian mothers: influence of stage of lactation and maternal plane of nutrition. Acta Paediatr 73:796–802

    CAS  Google Scholar 

  • Rakoff-Nahoum S, Medzhitov R (2006) Role of the innate immune system and host-commensal mutualism. Curr Top Microbiol Immunol 308:1–18

    PubMed  CAS  Google Scholar 

  • Resta-Lenert S, Barrett KE (2003) Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut 52:988–997

    PubMed  CAS  Google Scholar 

  • Roller M, Rechkemmer G, Watzl B (2004) Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J Nutr 134:153

    PubMed  CAS  Google Scholar 

  • Rook GAW (2009) Review series on helminths, immune modulation and the hygiene hypothesis: the broader implications of the hygiene hypothesis. Immunology 126:3–11

    PubMed  CAS  Google Scholar 

  • Rook GAW, Brunet LR (2005). Old Friends for breakfast. Clinical and Experimental Allergy 35(7):841–842

    PubMed  CAS  Google Scholar 

  • Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    PubMed  CAS  Google Scholar 

  • Sanders ME (1994) Lactic acid bacteria as promoters of human health. In: Goldberg I (ed) Functional foods: designer foods, pharmafoods, nutraceuticals. Aspen Publications, Frederick, pp 294–322

    Google Scholar 

  • Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    PubMed  CAS  Google Scholar 

  • Sela DA (2011) Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol 149:58–64. doi:10.1016/j.ijfoodmicro.2011.01.025

    PubMed  CAS  Google Scholar 

  • Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci 105:18964

    PubMed  CAS  Google Scholar 

  • Sellen DW (2001) Comparison of infant feeding patterns reported for nonindustrial populations with current recommendations. J Nutr 131:2707

    PubMed  CAS  Google Scholar 

  • Shorter RG, Huizenga KA, Spencer RJ (1972) A working hypothesis for the etiology and pathogenesis of nonspecific inflammatory bowel disease. Dig Dis Sci 17:1024–1032

    CAS  Google Scholar 

  • Sonnenburg JL, Angenent LT, Gordon JI (2004) Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol 5:569–573

    PubMed  CAS  Google Scholar 

  • Sprinz H, Kundel DW, Dammin GJ, Horowitz RE, Schneider H, Formal SB (1961) The response of the germ-free guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri: with special reference to lymphatic tissue and the intestinal tract. Am J Pathol 39:681

    PubMed  CAS  Google Scholar 

  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275

    PubMed  CAS  Google Scholar 

  • Tao N, Wu S, Kim J, An HJ, Hinde K, Power ML, Gagneux P, German JB, Lebrilla CB (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 10:1548–1557

    PubMed  CAS  Google Scholar 

  • Tullus K, Aronsson B, Marcus S, Möllby R (1989) Intestinal colonization with Clostridium difficile in infants up to 18 months of age. Eur J Clin Microbiol Infect Dis 8:390–393

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1131

    PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP (2009a) A core gut microbiome in obese and lean twins. Nature 457:480–484

    PubMed  CAS  Google Scholar 

  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009b) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6–14

    Google Scholar 

  • Urashima T, Odaka G, Asakuma S, Uemura Y, Goto K, Senda A, Saito T, Fukuda K, Messer M, Oftedal OT (2009) Chemical characterization of oligosaccharides in chimpanzee, bonobo, gorilla, orangutan, and siamang milk or colostrum. Glycobiology 19:499–508

    PubMed  CAS  Google Scholar 

  • Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol 3:307

    PubMed  Google Scholar 

  • Waaij VD (1989) The ecology of the human intestine and its consequences for overgrowth by pathogens such as Clostridium difficile. Annu Rev Microbiol 43(1):69–87

    PubMed  Google Scholar 

  • Wang M (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16 S rRNA genes. FEMS Microbiol Ecol 54:219–231

    PubMed  CAS  Google Scholar 

  • Wostmann BS, Larkin C, Moriarty A, Bruckner-Kardoss E (1983) Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab Anim Sci 33:46–50

    PubMed  CAS  Google Scholar 

  • Xu J, Gordon JI (2003) Honor thy symbionts. Proc Natl Acad Sci 100:10452–10459

    PubMed  CAS  Google Scholar 

  • Yildirim S, Yeoman CJ, Maksim S, Torralba M, Wilson BA, Goldberg TL, Stumpf RM, Leigh SR, White BA, Nelson KE (2010) Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS One 5:e13963

    PubMed  Google Scholar 

  • Zhang L, Li N, Neu J (2005) Probiotics for preterm infants. NeoReviews 6:e227

    Google Scholar 

  • Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci 106:2365

    PubMed  CAS  Google Scholar 

  • Zhang MM, Cheng JQ, Xia L, Lu YR, Wu XT (2011) Monitoring intestinal microbiota profile: a promising method for the ultraearly detection of colorectal cancer. Med Hypotheses 76:670–672

    PubMed  Google Scholar 

  • Zivkovic AM, German JB, Lebrilla CB, Mills DA (2010) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci 108:4653–4658

    PubMed  Google Scholar 

  • Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR (2004) Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie A. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martin, M.A., Sela, D.A. (2013). Infant Gut Microbiota: Developmental Influences and Health Outcomes. In: Clancy, K., Hinde, K., Rutherford, J. (eds) Building Babies. Developments in Primatology: Progress and Prospects, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4060-4_11

Download citation

Publish with us

Policies and ethics