Skip to main content

A Planar Integrated Micro-mass Spectrometer

  • Chapter
  • First Online:
LC-MS in Drug Bioanalysis

Abstract

A planar fully integrated micro-mass spectrometer fabricated in a full wafer based state-of-the-art MEMS technology in a glass–silicon–glass sandwich is presented. Within a volume of 7 × 10 × 1.3 mm³ it contains all components of a mass spectrometer, i.e., a microwave plasma electron source for ionization, an ionization chamber, the electron and ion extraction, acceleration and focusing electrodes, a new type of mass separator, a Faraday detector as well as structures for the pressure management within the system for analyte, plasma gas, optics, and mass separation. Also a spring arrangement to insert a self-aligning and contacting microchannel plate (MCP) is included. The complete system is transferred from one single photolithographic mask layer into a 2 ½ dimensional structure in a silicon substrate by ICP-etching. The designs of the subsystems, especially that of a new type of separation principle, are presented and the layout of the injection system and the batch processing of the device are outlined. A completely newly developed hardware and software of the electronics to drive the system is presented including its physical layout and operational scheme. Actual spectra obtained with the system demonstrate a mass resolution of 43 in a mass range of 0.5–200 and a sensitivity of <100 ppm. Means to adapt the size of the periphery like vacuum pumps, inlet pressure stages, and handling of liquid analytes, which would allow for a really handheld device, conclude the contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lehmann U, Krusemark O, Müller J, Vogel A, Binz D (2000) Micro machined gas chromatograph based on a plasma polymerized stationary phase. Kluwer Academic Publishers, Enschede

    Google Scholar 

  2. μGC Technology, Elster Instromet, [Online]. Available www.elster-instromet.com/en/micro_GC_technology.html. Accessed 17 Nov 2011

  3. Zimmermann S, Krippner P, Müller J (2002) Miniaturized flame ionisation detector for gas chromatography. Sensors and Actuators B: Chemical 83(1–3):285–289

    Article  Google Scholar 

  4. Kuipers W, Müller J (2010) Sensitivity of a planar micro-flame ionization detector. Talanta 82(5):1674–1679

    Article  CAS  Google Scholar 

  5. Helbling T, Pohle R, Durrer L (2008) Sensing NO2 with individual suspended single-walled carbon nanotubes. Sensors and Actuators B: Chemical 132(2):491–497

    Article  Google Scholar 

  6. Brucker GA, Rathbone GJ (2010) Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications. International Journal of Mass Spectrometry 295:133–137

    Article  CAS  Google Scholar 

  7. Tassetti C-M, Duraffoung L, Danel J-S, Lagutére T, Progent F (2011) Poster, Grenoble, France; Arpajon, France: HEMS 2011

    Google Scholar 

  8. Wapelhorst E, Hauschild J-P, Müller J (2007) Complex MEMS: a fully integrated TOF micro mass spectrometer. Sensors and Actuators A 138:22–27

    Article  Google Scholar 

  9. Brkic B, France N, Clare AT, Sutcliffe CJ (2009) Development of Quadrupole Mass Spectrometers Using Rapid Prototyping Technology. American Society for Mass Spectrometry 20:1359–1365

    Article  CAS  Google Scholar 

  10. Hogan T, Taylor S, Cheung K, Velasquez-Garcia L, Akinwande A, Pedder R (2010) Performance Characteristics of a MEMS Quadrupole Mass Filter With Square Electrodes: Experimental and Simulated Results. IEEE Transactions on Instrumentation and Measurement 59(9):2458–2467

    Article  CAS  Google Scholar 

  11. Mastrangelo C, Yeh J-J, Muller R (1992) Electrical and optical characteristics of vacuum-sealed polysilicon microlamps. IEEE Transactions on Electron Devices 39(6):1363–1375

    Article  CAS  Google Scholar 

  12. Han K, Lee Y, Jun D, Lee S, Jung KW, Yang SS (2011) Field Emission Ion Source Using a Carbon Nanotube Array for Micro Time-of-Flight Mass Spectrometer. Japanese Journal of Applied Physics 50:06GM04

    Article  Google Scholar 

  13. Madou M (2002) Fundamentals of microfabrication: the science of miniaturization. CRC, Boca Raton, FL

    Google Scholar 

  14. Ramírez Wong RM, Hauschild J-P, Wapelhorst E, Müller J (2009) Optimization of Microplasma for the Application in a Micro Mass Spectrometer. VDE, Berlin

    Google Scholar 

  15. Vossen JL, Kern W (1979) Thin Film Processes. Academic, New York, NY

    Google Scholar 

  16. Chapnam B (1980) Glow Discharge Processes: Sputtering and Plasma Etching. Wiley, New York, NY

    Google Scholar 

  17. Lieberman MA (2004) Principles of Plasma Discharges and Materials Processing. Wiley, New York, NY

    Google Scholar 

  18. Scientific Instrument Services, [Online]. Available http://www.sisweb.com. Accessed 18 Nov 2011

  19. Hauschild J-P, Wapelhorst E, Müller J (2007) Mass spectra measured by a fully integrated MEMS mass spectrometer. Int J Mass Spectrom 264(2007):53–60

    CAS  Google Scholar 

  20. Ewald H, Hintenberg H (1953) Methoden und Anwendungen der Massenspectroskopie. Verlag Chemie-GmbH, Weinheim

    Google Scholar 

  21. Orloff J (1997) Handbook of Charged Particel Optics. CRC, New York, NY

    Google Scholar 

  22. Blaum K, Geppert C, Müller P, Nörtershäuser W, Otten EW, Schmitt A, Trautmann N, Wendt K, Bushaw BA (1998) Properties and Performance of a Quadrupole Mass Filter used for Resonance Ionization Mass Spectrometry. International Journal of Mass Spectrometry 181:67–87

    Article  CAS  Google Scholar 

  23. Hauschild J-P, Wapelhorst E, Müller J (2009) The novel synchronous ion shield mass analyzer. International Journal of Mass Spectrometry 44:1330–1337

    Article  CAS  Google Scholar 

  24. Herzog R (1934) Ionen- und Elektronenoptische Zylinderlinsen und Prismen I. Z f Physik 89:447–473

    Article  Google Scholar 

  25. PHOTONIS France S.A.S., [Online]. Available http://www.photonis.com. Accessed 18 Nov 2011

  26. Reinhardt-Szyba M, Hauschild J-P, Wapelhorst E, Müller J (2009) Ein Mikromassenspektrometer mit integrierter Mikrokanalplatte, Proceedings mikrosystemtechnik kongress 2009, no. VDE VERLAG

    Google Scholar 

  27. Jousten K (2008) Handbook of Vacuum Technology. Wiley-Blackwell, Weinheim

    Google Scholar 

  28. Qu H, Fang D, Sadat A, Yuan P, Xie H (2004) High-resolution integrated micro-gyroscope for space applications. 41st Space Congress

    Google Scholar 

  29. B.S. GmbH, Bosch Sensortec GmbH, [Online]. Zugriff am 18 Nov 2011

    Google Scholar 

  30. DLP & MEMS, Texas Instruments, [Online]. Available www.ti.com/analog/docs/dlptoplevel.tsp?sectionId=622&tabId=2441&familyId=1743. Accessed 18 Nov 2011

  31. KYOCERA Inc Jet Printhead, Kyocera, [Online]. Available http://global.kyocera.com/prdct/tfc/pdf/07_08.pdf. Accessed 18 Nov 2011

  32. Sensitec GmbH, [Online]. Available http://www.sensitec.com/. Accessed 18 Nov 2011

  33. Quiring G, Hauschild J-P, Wapelhorst E, Müller J (2009) Optimierung der ansteuerung des SIS-massenseparators im planar integrierten mikro-massenspektrometer. Proceedings mikrosystemtechnik kongress 2009, no. VDE VERLAG

    Google Scholar 

  34. Reinhardt M, Quiring G, Ramírez Wong RM, Wehrs H, Müller J (2010) Helium detection using a planar integrated micro-mass spectrometer. International Journal of Mass Spectrometry 295:145–148

    Article  CAS  Google Scholar 

  35. Quiring G, Reinhardt-Szyba M, Müller J (2011) PIMMS, ein universell einsetzbares Mikromassenspektrometer. Proceedings mikrosystemtechnik kongress 2011, no. VDE VERLAG

    Google Scholar 

  36. Doms M, Müller J (2007) A micromachined vapor-jet vacuum pump. Transducers 2007 - international solid-state sensors, actuators and microsystems conference

    Google Scholar 

Download references

Acknowledgment

This work was funded and supported by several organizations and scientific as well as industrial partners for more than a decade. A number of PhD students, and many Diploma and Master students worked on this subject. It was funded by the City of Hamburg, the German Research Council (DFG), the European Union as well as the German Ministry of Research and Development; scientific partners were LETI and industrial partners Leda Mass, now part of MKS, Bayer Technology Services, and Krohne Messtechnik. PhD students besides the coauthors were Volker Relling, Ralph Siebert, Gerald Petzold, Jan-Peter Hauschild, and Eric Wapelhorst. Neither the PhD students nor the funders ever lost their confidence that finally we would succeed in realizing such a complex and fully integrated mass spectrometer.

Finally we appreciate the critical reading of the text by Winfred Kuipers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Müller, J., Quiring, G., Reinhardt-Szyba, M., Wong, R.M.R., Wehrs, H. (2012). A Planar Integrated Micro-mass Spectrometer. In: Xu, Q., Madden, T. (eds) LC-MS in Drug Bioanalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3828-1_14

Download citation

Publish with us

Policies and ethics