Skip to main content

Diagnosis and Treatment of Childhood Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Leukemia is the most common pediatric cancer. Acute lymphoblastic leukemia (ALL) is the most prevalent subtype, accounting for 75–80 % of all cases. Leukemias arise from genetic changes that occur in a single progenitor cell at various stages of maturation, resulting in a clonal expansion. The single-cell origin of ALL is demonstrated clearly by the finding of clonal rearrangements of T-cell receptor (TCR) or immunoglobulin genes [1]. ALL cells reflect, at least in part, the immunophenotypic and genetic characteristics of committed B- or T-lymphoid precursors; although they do not proliferate as rapidly as their normal counterparts [2], inability to differentiate and resistance to cell death lead to their buildup. By the time of diagnosis, ALL cells have usually occupied much of the bone marrow microenvironment at the expenses of normal hematopoietic cells, resulting in anemia, thrombocytopenia, and/or neutropenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Dongen JJ, Wolvers-Tettero IL. Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta. 1991;198(1–2):93–174.

    Article  PubMed  Google Scholar 

  2. Campana D, Janossy G. Proliferation of normal and malignant human immature lymphoid cells. Blood. 1988;71(5):1201–10.

    PubMed  CAS  Google Scholar 

  3. Hayhoe FG. Leukaemia. Research and clinical practice. London: J&A Churchill Ltd; 1960.

    Google Scholar 

  4. Virchow R. Weisses Blut und Milztumoren. Med Ztg. 1847;16:9–15.

    Google Scholar 

  5. Neumann E. Ueber Myelogene Leukämie. Berl klin Wschr. 1878;15:69–131.

    Google Scholar 

  6. Ehrlich P. Histology of the blood, normal and pathologic. Nothnagel’s encyclopaedia of practical medicine (English edition). Philadelphia, PA: W.B. Saunders; 1905.

    Google Scholar 

  7. Bright R. Observations on abdominal tumours and intumescence; illustrated by cases of disease of the spleen. Guy’s Hosp Rep. 1838;3:401.

    Google Scholar 

  8. Farber S, Diamond LK, Mercer RD, et al. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787–93.

    Article  PubMed  CAS  Google Scholar 

  9. Proceedings of the First Clinical ACTH Conference. Philadelphia: Blakiston Co.; 1950.

    Google Scholar 

  10. Rosenthal MC, Saunders RH, Schwartz LI, Zannos L, Perez Santiago E, Dameshek W. The use of adrenocorticotropic hormone and cortisone in the treatment of leukemia and leukosarcoma. Blood. 1951;6(9):804–23.

    PubMed  CAS  Google Scholar 

  11. Hitchings GH, Elion GB. Layer on layer: the Bruce F. Cain memorial award lecture. Cancer Res. 1985;45(6):2415–20.

    PubMed  CAS  Google Scholar 

  12. George P, Hernandez K, Hustu O, Borella L, Holton C, Pinkel D. A study of “total therapy” of acute lymphocytic leukemia in children. J Pediatr. 1968;72(3):399–408.

    Article  PubMed  CAS  Google Scholar 

  13. Pinkel D, Hernandez K, Borella L, et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer. 1971;27(2):247–56.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas ED, Buckner CD, Rudolph RH, et al. Allogeneic marrow grafting for hematologic malignancy using HL-a matched donor-recipient sibling pairs. Blood. 1971;38(3):267–87.

    PubMed  CAS  Google Scholar 

  15. Henze G, Langermann HJ, Fengler R, et al. Acute lymphoblastic leukemia therapy study BFM 79/81 in children and adolescents: intensified reinduction therapy for patients with different risk for relapse. Klin Padiatr. 1982;194(4):195–203.

    Article  PubMed  CAS  Google Scholar 

  16. Jeha S, Pui CH. Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5): 973–90.

    Article  PubMed  Google Scholar 

  17. Pui CH, Campana D, Pei D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 2009;360:2730–41.

    Article  PubMed  CAS  Google Scholar 

  18. Ries LA, Melbert D, Krapcho M, et al. SEER Cancer Statistics Review, 1975–2005, Bethesda, MD: National Cancer Institute; 2007. Based on November 2007 SEER data submission, posted to the SEER web site 2008 [serial online].

    Google Scholar 

  19. Pui CH, Sandlund JT, Pei D, et al. Results of therapy for acute lymphoblastic leukemia in black and white children. J Am Med Assoc. 2003;290(15):2001–7.

    Article  CAS  Google Scholar 

  20. Spector LG, Ross JA, Robison LL, Bhatia S. Epidemiology and etiology. In: Pui CH, editor. Childhood leukemias. 2nd ed. Cambridge: Cambridge University Press; 2006. p. 48–66.

    Google Scholar 

  21. Bernt KM, Armstrong SA. Leukemia stem cells and human acute lymphoblastic leukemia. Semin Hematol. 2009;46(1):33–8.

    Article  PubMed  Google Scholar 

  22. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371(9617):1030–43.

    Article  PubMed  CAS  Google Scholar 

  23. Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306(5694):269–71.

    Article  PubMed  CAS  Google Scholar 

  24. Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2006;6(5):347–59.

    Article  PubMed  CAS  Google Scholar 

  25. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7.

    Article  PubMed  CAS  Google Scholar 

  26. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell. 2002;1: 133–43.

    Article  PubMed  CAS  Google Scholar 

  27. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood. 2003;102:2951–9.

    Article  PubMed  CAS  Google Scholar 

  29. Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood. 2005;106(4):1189–98.

    Article  PubMed  CAS  Google Scholar 

  30. Andersson A, Olofsson T, Lindgren D, et al. Molecular signatures in childhood acute leukemia and their correlations to expression patterns in normal hematopoietic subpopulations. Proc Natl Acad Sci USA. 2005;102(52):19069–74.

    Article  PubMed  CAS  Google Scholar 

  31. Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75–87.

    Article  PubMed  CAS  Google Scholar 

  32. den Boer ML, van Slegtenhorst M, de Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.

    Article  CAS  Google Scholar 

  33. Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.

    Article  PubMed  CAS  Google Scholar 

  34. Mullighan CG, Miller CB, Radtke I, et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature. 2008;453(7191):110–4.

    Article  PubMed  CAS  Google Scholar 

  35. Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2009;106(23):9414–8.

    Article  PubMed  CAS  Google Scholar 

  36. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6.

    Article  PubMed  CAS  Google Scholar 

  37. Shochat C, Tal N, Bandapalli OR, et al. Gain-of-function mutations in interleukin-7 receptor-alpha (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208(5):901–8.

    Article  PubMed  CAS  Google Scholar 

  38. Zenatti PP, Ribeiro D, Li W, et al. Oncogenic IL7R gain-of-­function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011;43(10):932–9.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157–63.

    Google Scholar 

  40. Couto E, Chen B, Hemminki K. Association of childhood acute lymphoblastic leukaemia with cancers in family members. Br J Cancer. 2005;93(11):1307–9.

    Article  PubMed  CAS  Google Scholar 

  41. Wiemels JL, Cazzaniga G, Daniotti M, et al. Prenatal origin of acute lymphoblastic leukaemia in children. Lancet. 1999; 354(9189):1499–503.

    Article  PubMed  CAS  Google Scholar 

  42. Maia AT, Ford AM, Jalali GR, et al. Molecular tracking of leukemogenesis in a triplet pregnancy. Blood. 2001;98(2):478–82.

    Article  PubMed  CAS  Google Scholar 

  43. Greaves M. In utero origins of childhood leukaemia. Early Hum Dev. 2005;81(1):123–9.

    Article  PubMed  Google Scholar 

  44. Chuk MK, McIntyre E, Small D, Brown P. Discordance of MLL-rearranged (MLL-R) infant acute lymphoblastic leukemia in monozygotic twins with spontaneous clearance of preleukemic clone in unaffected twin. Blood. 2009;113(26):6691–4.

    Article  PubMed  CAS  Google Scholar 

  45. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193–203.

    Article  PubMed  CAS  Google Scholar 

  46. Hong D, Gupta R, Ancliff P, et al. Initiating and cancer-­propagating cells in TEL-AML1-associated childhood leukemia. Science. 2008;319(5861):336–9.

    Article  PubMed  CAS  Google Scholar 

  47. Bateman CM, Colman SM, Chaplin T, et al. Acquisition of genome-wide copy number alterations in monozygotic twins with acute lymphoblastic leukemia. Blood. 2010;115(17):3553–8.

    Article  PubMed  CAS  Google Scholar 

  48. Maia AT, Tussiwand R, Cazzaniga G, et al. Identification of preleukemic precursors of hyperdiploid acute lymphoblastic leukemia in cord blood. Genes Chromosomes Cancer. 2004;40(1):38–43.

    Article  PubMed  Google Scholar 

  49. Wiemels JL, Leonard BC, Wang Y, et al. Site-specific translocation and evidence of postnatal origin of the t(1;19) E2A-PBX1 fusion in childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2002;99(23):15101–6.

    Article  PubMed  CAS  Google Scholar 

  50. Isoda T, Ford AM, Tomizawa D, et al. Immunologically silent cancer clone transmission from mother to offspring. Proc Natl Acad Sci USA. 2009;106(42):17882–5.

    Article  PubMed  Google Scholar 

  51. Sandler DP, Ross JA. Epidemiology of acute leukemia in children and adults. Semin Oncol. 1997;24(1):3–16.

    PubMed  CAS  Google Scholar 

  52. Ross JA, Spector LG, Robison LL, Olshan AF. Epidemiology of leukemia in children with Down syndrome. Pediatr Blood Cancer. 2005;44(1):8–12.

    Article  PubMed  Google Scholar 

  53. Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008;372(9648):1484–92.

    Article  PubMed  CAS  Google Scholar 

  54. Kearney L, De Gonzalez CD, Yeung J, et al. Specific JAK2 mutation (JAK2R683) and multiple gene deletions in Down syndrome acute lymphoblastic leukemia. Blood. 2009;113(3):646–8.

    Article  PubMed  CAS  Google Scholar 

  55. Gaikwad A, Rye CL, Devidas M, et al. Prevalence and clinical correlates of JAK2 mutations in Down syndrome acute lymphoblastic leukaemia. Br J Haematol. 2009;144(6):930–2.

    Article  PubMed  CAS  Google Scholar 

  56. Louie S, Schwartz RS. Immunodeficiency and the pathogenesis of lymphoma and leukemia. Semin Hematol. 1978;15(2):117–38.

    PubMed  CAS  Google Scholar 

  57. Bhatia S, Neglia JP. Epidemiology of childhood acute myelogenous leukemia. J Pediatr Hematol Oncol. 1995;17(2):94–100.

    Article  PubMed  CAS  Google Scholar 

  58. Liberzon E, Avigad S, Stark B, et al. Germ-line ATM gene alterations are associated with susceptibility to sporadic T-cell acute lymphoblastic leukemia in children. Genes Chromosomes Cancer. 2004;39(2):161–6.

    Article  PubMed  CAS  Google Scholar 

  59. Trevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5.

    Article  PubMed  CAS  Google Scholar 

  60. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10.

    Article  PubMed  CAS  Google Scholar 

  61. Prasad RB, Hosking FJ, Vijayakrishnan J, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7.

    Article  PubMed  CAS  Google Scholar 

  62. Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol. 1997;70:130–9.

    PubMed  CAS  Google Scholar 

  63. Ahlbom A, Day N, Feychting M, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83(5):692–8.

    Article  PubMed  CAS  Google Scholar 

  64. Buffler PA, Kwan ML, Reynolds P, Urayama KY. Environmental and genetic risk factors for childhood leukemia: appraising the evidence. Cancer Invest. 2005;23(1):60–75.

    Article  PubMed  CAS  Google Scholar 

  65. Weng HH, Tsai SS, Chiu HF, Wu TN, Yang CY. Association of childhood leukemia with residential exposure to petrochemical air pollution in Taiwan. Inhal Toxicol. 2008;20(1):31–6.

    Article  PubMed  CAS  Google Scholar 

  66. Chang JS. Parental smoking and childhood leukemia. Methods Mol Biol. 2009;472(37):103–37.

    Article  PubMed  Google Scholar 

  67. Alexander FE, Patheal SL, Biondi A, et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res. 2001;61(6):2542–6.

    PubMed  CAS  Google Scholar 

  68. Biondi A, Cimino G, Pieters R, Pui CH. Biological and therapeutic aspects of infant leukemia. Blood. 2000;96(1):24–33.

    PubMed  CAS  Google Scholar 

  69. Chen CL, Liu Q, Pui CH, et al. Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood. 1997;89(5):1701–7.

    PubMed  CAS  Google Scholar 

  70. McNally RJ, Eden TO. An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol. 2004;127(3):243–63.

    Article  PubMed  Google Scholar 

  71. Kinlen L. Childhood leukaemia and ordnance factories in west Cumbria during the Second World War. Br J Cancer. 2006;95(1): 102–6.

    Article  PubMed  CAS  Google Scholar 

  72. Howard SC, Gajjar AJ, Cheng C, et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. J Am Med Assoc. 2002;288(16):2001–7.

    Article  Google Scholar 

  73. Pui CH, Howard SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol. 2008;9(3):257–68.

    Article  PubMed  Google Scholar 

  74. Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias. French- American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451–8.

    Article  PubMed  CAS  Google Scholar 

  75. Vardiman JW, Thiele J, Arber DA, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  PubMed  CAS  Google Scholar 

  76. Campana D, Behm FG. Immunophenotyping of leukemia. J Immunol Methods. 2000;243(1–2):59–75.

    Article  PubMed  CAS  Google Scholar 

  77. Jeha S, Behm F, Pei D, et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2006;108(10):3302–4.

    Article  PubMed  CAS  Google Scholar 

  78. Dworzak MN, Schumich A, Printz D, et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8.

    Article  PubMed  CAS  Google Scholar 

  79. Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood. 1996;87(3):1134–9.

    PubMed  CAS  Google Scholar 

  80. Behm FG, Raimondi SC, Schell MJ, Look AT, Rivera GK, Pui CH. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosomal hyperdiploidy and other favorable prognostic features [see comments]. Blood. 1992;79(4):1011–6.

    PubMed  CAS  Google Scholar 

  81. Koehler M, Behm FG, Shuster J, et al. Transitional pre-B-cell acute lymphoblastic leukemia of childhood is associated with favorable prognostic clinical features and an excellent outcome: a Pediatric Oncology Group study. Leukemia. 1993;7(12):2064–8.

    PubMed  CAS  Google Scholar 

  82. Guillaume N, Alleaume C, Munfus D, et al. ZAP-70 tyrosine kinase is constitutively expressed and phosphorylated in B-lineage acute lymphoblastic leukemia cells. Haematologica. 2005;90(7): 899–905.

    PubMed  CAS  Google Scholar 

  83. Chiaretti S, Guarini A, De Propris MS, et al. ZAP-70 expression in acute lymphoblastic leukemia: association with the E2A/PBX1 rearrangement and the pre-B stage of differentiation and prognostic implications. Blood. 2006;107(1):197–204.

    Article  PubMed  CAS  Google Scholar 

  84. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79(24):7824–7.

    Article  PubMed  CAS  Google Scholar 

  85. Campana D, Thompson JS, Amlot P, Brown S, Janossy G. The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol. 1987;138(2): 648–55.

    PubMed  CAS  Google Scholar 

  86. Campana D, van Dongen JJ, Mehta A, et al. Stages of T-cell receptor protein expression in T-cell acute lymphoblastic leukemia. Blood. 1991;77(7):1546–54.

    PubMed  CAS  Google Scholar 

  87. Pullen J, Shuster JJ, Link M, et al. Significance of commonly used prognostic factors differs for children with T cell acute lymphocytic leukemia (ALL), as compared to those with B-precursor ALL. A Pediatric Oncology Group (POG) study. Leukemia. 1999;13(11):1696–707.

    Article  PubMed  CAS  Google Scholar 

  88. van Grotel M, Meijerink JP, Van Wering ER, et al. Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences. Leukemia. 2008;22(1):124–31.

    Article  PubMed  CAS  Google Scholar 

  89. Rothenberg EV, Moore JE, Yui MA. Launching the T-cell-lineage developmental programme. Nat Rev Immunol. 2008;8(1):9–21.

    Article  PubMed  CAS  Google Scholar 

  90. Bell JJ, Bhandoola A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature. 2008;452(7188): 764–7.

    Article  PubMed  CAS  Google Scholar 

  91. Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.

    Article  PubMed  CAS  Google Scholar 

  92. Hermans A, Gow J, Selleri L, et al. bcr-abl oncogene activation in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 1988;2(10):628–33.

    PubMed  CAS  Google Scholar 

  93. Hermans A, Heisterkamp N, von Linden M, et al. Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia. Cell. 1987;51(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  94. Heisterkamp N, Jenster G, ten Hoeve J, Zovich D, Pattengale PK, Groffen J. Acute leukaemia in bcr/abl transgenic mice. Nature. 1990;344(6263):251–3.

    Article  PubMed  CAS  Google Scholar 

  95. Williams RT, Roussel MF, Sherr CJ. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2006;103(17):6688–93.

    Article  PubMed  CAS  Google Scholar 

  96. Hagemeijer A, Graux C. ABL1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2010;49(4): 299–308.

    PubMed  CAS  Google Scholar 

  97. Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359(9321): 1909–15.

    Article  PubMed  Google Scholar 

  98. Armstrong SA, Look AT. Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol. 2005;23(26):6306–15.

    Article  PubMed  CAS  Google Scholar 

  99. Stam RW, Schneider P, Hagelstein JA, et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood. 2009;115(14):2835–44.

    Article  PubMed  CAS  Google Scholar 

  100. Stam RW, den Boer ML, Schneider P, et al. Association of high-level MCL-1 expression with in vitro and in vivo prednisone resistance in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2010;115(5):1018–25.

    Article  PubMed  CAS  Google Scholar 

  101. Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007;7(11):823–33.

    Article  PubMed  CAS  Google Scholar 

  102. Bardini M, Spinelli R, Bungaro S, et al. DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia. 2010;24(1):169–76.

    Article  PubMed  CAS  Google Scholar 

  103. Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14(5):355–68.

    Article  PubMed  CAS  Google Scholar 

  104. Stumpel DJ, Schneider P, van Roon EH, et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood. 2009;114(27):5490–8.

    Article  PubMed  CAS  Google Scholar 

  105. Schafer E, Irizarry R, Negi S, et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood. 2010;115(23):4798–809.

    Article  PubMed  CAS  Google Scholar 

  106. Shurtleff SA, Buijs A, Behm FG, et al. TEL/AML1 fusion resulting from a cryptic t(12;21) is the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995;9(12):1985–9.

    PubMed  CAS  Google Scholar 

  107. Romana SP, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood. 1995;85(12):3662–70.

    PubMed  CAS  Google Scholar 

  108. Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 2004;23(24):4275–83.

    Article  PubMed  CAS  Google Scholar 

  109. Hock H, Meade E, Medeiros S, et al. Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev. 2004;18(19):2336–41.

    Article  PubMed  CAS  Google Scholar 

  110. Bernardin F, Yang Y, Cleaves R, et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res. 2002;62(14):3904–8.

    PubMed  CAS  Google Scholar 

  111. Schindler JW, Van BD, Foudi A, et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell. 2009;5(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  112. Ford AM, Palmi C, Bueno C, et al. The TEL-AML1 leukemia fusion gene dysregulates the TGF-beta pathway in early B lineage progenitor cells. J Clin Invest. 2009;119(4):826–36.

    PubMed  CAS  Google Scholar 

  113. Krapf G, Kaindl U, Kilbey A, et al. ETV6/RUNX1 abrogates mitotic checkpoint function and targets its key player MAD2L1. Oncogene. 2010;29(22):3307–12.

    Article  PubMed  CAS  Google Scholar 

  114. Kamps MP, Look AT, Baltimore D. The human t(1;19) translocation in pre-B ALL produces multiple nuclear E2A-Pbx1 fusion proteins with differing transforming potentials. Genes Dev. 1991;5(3):358–68.

    Article  PubMed  CAS  Google Scholar 

  115. DiMartino JF, Selleri L, Traver D, et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood. 2001;98(3):618–26.

    Article  PubMed  CAS  Google Scholar 

  116. Kamps MP, Baltimore D. E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol. 1993;13(1): 351–7.

    PubMed  CAS  Google Scholar 

  117. Inaba T, Inukai T, Yoshihara T, et al. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature. 1996;382(6591):541–4.

    Article  PubMed  CAS  Google Scholar 

  118. Inoue A, Seidel MG, Wu W, et al. Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell. 2002;2(4):279–88.

    Article  PubMed  Google Scholar 

  119. Secker-Walker LM, Swansbury GJ, Hardisty RM, et al. Cytogenetics of acute lymphoblastic leukaemia in children as a factor in the prediction of long-term survival. Br J Haematol. 1982;52(3):389–99.

    Article  PubMed  CAS  Google Scholar 

  120. Williams DL, Tsiatis A, Brodeur GM, et al. Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood. 1982;60(4):864–71.

    PubMed  CAS  Google Scholar 

  121. Schultz KR, Pullen DJ, Sather HN, et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109(3):926–35.

    Article  PubMed  CAS  Google Scholar 

  122. Ito C, Kumagai M, Manabe A, et al. Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood. 1999;93(1):315–20.

    PubMed  CAS  Google Scholar 

  123. Synold TW, Relling MV, Boyett JM, et al. Blast cell methotrexate-polyglutamate accumulation in vivo differs by lineage, ploidy, and methotrexate dose in acute lymphoblastic leukemia. J Clin Invest. 1994;94(5):1996–2001.

    Article  PubMed  CAS  Google Scholar 

  124. Paulsson K, Forestier E, Lilljebjorn H, et al. Genetic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2010;107(50):21719–24.

    Article  PubMed  CAS  Google Scholar 

  125. Davidsson J, Paulsson K, Lindgren D, et al. Relapsed childhood high hyperdiploid acute lymphoblastic leukemia: presence of preleukemic ancestral clones and the secondary nature of microdeletions and RTK-RAS mutations. Leukemia. 2010;24(5): 924–31.

    Article  PubMed  CAS  Google Scholar 

  126. Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR. Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood. 1992;79(5):1327–33.

    PubMed  CAS  Google Scholar 

  127. Macintyre EA, Smit L, Ritz J, Kirsch IR, Strominger JL. Disruption of the SCL locus in T-lymphoid malignancies correlates with commitment to the T-cell receptor alpha beta lineage. Blood. 1992;80(6):1511–20.

    PubMed  CAS  Google Scholar 

  128. Rabbitts TH. LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev. 1998;12(17):2651–7.

    Article  PubMed  CAS  Google Scholar 

  129. Howe SJ, Mansour MR, Schwarzwaelder K, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.

    Article  PubMed  CAS  Google Scholar 

  130. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.

    Article  PubMed  CAS  Google Scholar 

  131. McCormack MP, Young LF, Vasudevan S, et al. The Lmo2 oncogene initiates leukemia in mice by inducing thymocyte self-renewal. Science. 2010;327(5967):879–83.

    Article  PubMed  CAS  Google Scholar 

  132. Okuda T, Shurtleff SA, Valentine MB, et al. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood. 1995;85(9):2321–30.

    PubMed  CAS  Google Scholar 

  133. Kamijo T, Zindy F, Roussel MF, et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell. 1997;91(5):649–59.

    Article  PubMed  CAS  Google Scholar 

  134. Van Vlierberghe P, Palomero T, Khiabanian H, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42(4):338–42.

    Article  PubMed  CAS  Google Scholar 

  135. Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 2009;114(3):647–50.

    Article  PubMed  CAS  Google Scholar 

  136. Gutierrez A, Sanda T, Ma W, et al. Inactivation of LEF1 in T-cell acute lymphoblastic leukemia. Blood. 2010;115(14):2845–51.

    Article  PubMed  Google Scholar 

  137. Buonamici S, Trimarchi T, Ruocco MG, et al. CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature. 2009;459(7249):1000–4.

    Article  PubMed  CAS  Google Scholar 

  138. Homminga I, Pieters R, Langerak AW, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484–97.

    Article  PubMed  CAS  Google Scholar 

  139. Pui CH, Pei D, Sandlund JT, et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):371–82.

    Article  PubMed  CAS  Google Scholar 

  140. Schrappe M, Reiter A, Zimmermann M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia. 2000;14(12):2205–22.

    Article  PubMed  CAS  Google Scholar 

  141. Gaynon PS, Trigg ME, Heerema NA, et al. Children’s Cancer group trials in childhood acute lymphoblastic leukemia: 1983–1995. Leukemia. 2000;14(12):2223–33.

    Article  PubMed  CAS  Google Scholar 

  142. Harms DO, Janka-Schaub GE. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia. 2000;14(12):2234–9.

    Article  PubMed  CAS  Google Scholar 

  143. Vilmer E, Suciu S, Ferster A, et al. Long-term results of three randomized trials (58831, 58832, 58881) in childhood acute lymphoblastic leukemia: a CLCG-EORTC report. Children Leukemia Cooperative Group. Leukemia. 2000;14(12):2257–66.

    Article  PubMed  CAS  Google Scholar 

  144. Maloney KW, Shuster JJ, Murphy S, Pullen J, Camitta BA. Long-term results of treatment studies for childhood acute lymphoblastic leukemia: Pediatric Oncology Group studies from 1986–1994. Leukemia. 2000;14(12):2276–85.

    Article  PubMed  CAS  Google Scholar 

  145. Tsuchida M, Ikuta K, Hanada R, et al. Long-term follow-up of childhood acute lymphoblastic leukemia in Tokyo Children’s Cancer Study group 1981–1995. Leukemia. 2000;14(12):2295–306.

    Article  PubMed  CAS  Google Scholar 

  146. Pui CH, Boyett JM, Relling MV, et al. Sex differences in prognosis for children with acute lymphoblastic leukemia. J Clin Oncol. 1999;17(3):818–24.

    PubMed  CAS  Google Scholar 

  147. Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood. 2001;97(5):1211–8.

    Article  PubMed  CAS  Google Scholar 

  148. Pui CH, Sandlund JT, Pei D, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood. 2004;104(9):2690–6.

    Article  PubMed  CAS  Google Scholar 

  149. Pollock BH, DeBaun MR, Camitta BM, et al. Racial differences in the survival of childhood B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group Study. J Clin Oncol. 2000;18(4):813–23.

    PubMed  CAS  Google Scholar 

  150. Bhatia S, Sather HN, Heerema NA, Trigg ME, Gaynon PS, Robison LL. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood. 2002;100(6):1957–64.

    Article  PubMed  CAS  Google Scholar 

  151. Pui CH, Boyett JM, Hancock ML, Pratt CB, Meyer WH, Crist WM. Outcome of treatment for childhood cancer in black as compared with white children. The St Jude Children’s Research Hospital experience, 1962 through 1992. J Am Med Assoc. 1995;273(8):633–7.

    Article  CAS  Google Scholar 

  152. Yang JJ, Cheng C, Devidas M, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet. 2011;43(3):237–41.

    Article  PubMed  CAS  Google Scholar 

  153. Pui CH, Boyett JM, Rivera GK, et al. Long-term results of Total Therapy studies 11, 12 and 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia. 2000;14(12):2286–94.

    Article  PubMed  CAS  Google Scholar 

  154. Eden OB, Harrison G, Richards S, et al. Long-term follow-up of the United Kingdom Medical Research Council protocols for childhood acute lymphoblastic leukaemia, 1980–1997. Medical Research Council Childhood Leukaemia Working Party. Leukemia. 2000;14(12):2307–20.

    Article  PubMed  CAS  Google Scholar 

  155. Pui CH, Pei D, Campana D, et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J Clin Oncol. 2011;29(4):386–91.

    Article  PubMed  Google Scholar 

  156. Pieters R, Schrappe M, De LP, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370(9583):240–50.

    Article  PubMed  CAS  Google Scholar 

  157. Mahmoud HH, Rivera GK, Hancock ML, et al. Low leukocyte counts with blast cells in cerebrospinal fluid of children with newly diagnosed acute lymphoblastic leukemia. N Engl J Med. 1993;329(5):314–9.

    Article  PubMed  CAS  Google Scholar 

  158. Gajjar A, Harrison PL, Sandlund JT, et al. Traumatic lumbar ­puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood. 2000;96(10):3381–4.

    PubMed  CAS  Google Scholar 

  159. Burger B, Zimmermann M, Mann G, et al. Diagnostic cerebrospinal fluid examination in children with acute lymphoblastic leukemia: significance of low leukocyte counts with blasts or traumatic lumbar puncture. J Clin Oncol. 2003;21(2):184–8.

    Article  PubMed  Google Scholar 

  160. Goldberg JM, Silverman LB, Levy DE, et al. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol. 2003;21(19):3616–22.

    Article  PubMed  Google Scholar 

  161. Pui CH, Behm FG, Singh B, et al. Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood. 1990;75(1):198–202.

    PubMed  CAS  Google Scholar 

  162. Arico M, Valsecchi MG, Camitta B, et al. Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med. 2000;342(14):998–1006.

    Article  PubMed  CAS  Google Scholar 

  163. Arico M, Schrappe M, Hunger SP, et al. Clinical outcome of children with newly diagnosed Philadelphia chromosome-positive acute lymphoblastic leukemia treated between 1995 and 2005. J Clin Oncol. 2010;28(31):4755–61.

    Article  PubMed  Google Scholar 

  164. Schultz KR, Bowman WP, Aledo A, et al. Improved early event free survival with imatininb in Philadelphia chromosome-positive acute lymphoblastic leukemia: a Children’s Oncology Group study. J Clin Oncol. 2009;27(31):5175–81.

    Article  PubMed  CAS  Google Scholar 

  165. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80.

    Article  PubMed  CAS  Google Scholar 

  166. Harvey RC, Mullighan CG, Wang X, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116(23):4874–84.

    Article  PubMed  CAS  Google Scholar 

  167. Mann G, Cazzaniga G, van der Velden VH, et al. Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: The ‘big sister’ of the infant disease? Leukemia. 2007;21(4):642–6.

    PubMed  CAS  Google Scholar 

  168. Jansen MW, Corral L, van der Velden V, et al. Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia. 2007;21(4):633–41.

    PubMed  CAS  Google Scholar 

  169. Raimondi SC, Zhou Y, Mathew S, et al. Reassessment of the prognostic significance of hypodiploidy in pediatric patients with acute lymphoblastic leukemia. Cancer. 2003;98(12):2715–22.

    Article  PubMed  Google Scholar 

  170. Nachman JB, Heerema NA, Sather H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110(4):1112–5.

    Article  PubMed  CAS  Google Scholar 

  171. Inaba T, Roberts WM, Shapiro LH, et al. Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science. 1992;257(5069):531–4.

    Article  PubMed  CAS  Google Scholar 

  172. Rubnitz JE, Downing JR, Pui CH, et al. TEL gene rearrangement in acute lymphoblastic leukemia: a new genetic marker with prognostic significance. J Clin Oncol. 1997;15(3):1150–7.

    PubMed  CAS  Google Scholar 

  173. Maloney K, McGavran L, Murphy J, et al. TEL-AML1 fusion identifies a subset of children with standard risk acute lymphoblastic leukemia who have an excellent prognosis when treated with therapy that includes a single delayed intensification. Leukemia. 1999;13(11):1708–12.

    Article  PubMed  CAS  Google Scholar 

  174. Forestier E, Heyman M, Andersen MK, et al. Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol. 2008;140(6):665–72.

    Article  PubMed  Google Scholar 

  175. Bhojwani D, Pei D, Sandlund JT, et al. ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia. 2012;26(2):265–70.

    Article  PubMed  CAS  Google Scholar 

  176. Ramakers-Van Woerden NL, Pieters R, Loonen AH, et al. TEL/AML1 gene fusion is related to in vitro drug sensitivity for L-asparaginase in childhood acute lymphoblastic leukemia. Blood. 2000;96(3):1094–9.

    PubMed  CAS  Google Scholar 

  177. Frost BM, Forestier E, Gustafsson G, et al. Translocation t(12;21) is related to in vitro cellular drug sensitivity to doxorubicin and etoposide in childhood acute lymphoblastic leukemia. Blood. 2004;104(8):2452–7.

    Article  PubMed  CAS  Google Scholar 

  178. Kager L, Cheok M, Yang W, et al. Folate pathway gene expression differs in subtypes of acute lymphoblastic leukemia and influences methotrexate pharmacodynamics. J Clin Invest. 2005;115(1):110–7.

    PubMed  CAS  Google Scholar 

  179. Secker-Walker LM, Chessells JM, Stewart EL, Swansbury GJ, Richards S, Lawler SD. Chromosomes and other prognostic factors in acute lymphoblastic leukaemia: a long-term follow-up. Br J Haematol. 1989;72(3):336–42.

    Article  PubMed  CAS  Google Scholar 

  180. Sutcliffe MJ, Shuster JJ, Sather HN, et al. High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor acute lymphoblastic leukemia: a Children’s Oncology Group (COG) initiative. Leukemia. 2005;19(5):734–40.

    Article  PubMed  CAS  Google Scholar 

  181. Raimondi SC, Pui CH, Hancock ML, Behm FG, Filatov L, Rivera GK. Heterogeneity of hyperdiploid (51-67) childhood acute lymphoblastic leukemia. Leukemia. 1996;10(2):213–24.

    PubMed  CAS  Google Scholar 

  182. Arico M, Valsecchi MG, Rizzari C, et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J Clin Oncol. 2008;26(2):283–9.

    Article  PubMed  CAS  Google Scholar 

  183. Pui CH, Carroll AJ, Head D, et al. Near-triploid and near-­tetraploid acute lymphoblastic leukemia of childhood. Blood. 1990;76(3):590–6.

    PubMed  CAS  Google Scholar 

  184. Raimondi SC, Zhou Y, Shurtleff SA, Rubnitz JE, Pui CH, Behm FG. Near-triploidy and near-tetraploidy in childhood acute lymphoblastic leukemia: association with B-lineage blast cells carrying the ETV6-RUNX1 fusion, T-lineage immunophenotype, and favorable outcome. Cancer Genet Cytogenet. 2006;169(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  185. Jeha S, Pei D, Raimondi SC, et al. Increased risk for CNS relapse in pre-B cell leukemia with the t(1;19)/TCF3-PBX1. Leukemia. 2009;23(8):1406–9.

    Article  PubMed  CAS  Google Scholar 

  186. Ballerini P, Blaise A, Busson-Le Coniat M, et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood. 2002;100(3):991–7.

    Article  PubMed  CAS  Google Scholar 

  187. Cave H, Suciu S, Preudhomme C, et al. Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. Blood. 2004;103(2):442–50.

    Article  PubMed  CAS  Google Scholar 

  188. Breit S, Stanulla M, Flohr T, et al. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 2006;108(4):1151–7.

    Article  PubMed  CAS  Google Scholar 

  189. Larson Gedman A, Chen Q, Kugel DS, et al. The impact of NOTCH1 FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia. 2009;23(8):1417–25.

    Article  PubMed  CAS  Google Scholar 

  190. Park MJ, Taki T, Oda M, et al. FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 2009;145(2):198–206.

    Article  PubMed  CAS  Google Scholar 

  191. Zuurbier L, Homminga I, Calvert V, et al. NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. 2010;24(12):2014–22.

    Article  PubMed  CAS  Google Scholar 

  192. Relling MV, Pui CH, Cheng C, Evans WE. Thiopurine methyltransferase in acute lymphoblastic leukemia. Blood. 2006;107(2): 843–4.

    Article  PubMed  CAS  Google Scholar 

  193. Bo J, Schroder H, Kristinsson J, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer. 1999;86(6):1080–6.

    Article  PubMed  CAS  Google Scholar 

  194. Pui CH, Relling MV. Topoisomerase II inhibitor-related acute myeloid leukaemia. Br J Haematol. 2000;109(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  195. Relling MV, Rubnitz JE, Rivera GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet. 1999;354(9172):34–9.

    Article  PubMed  CAS  Google Scholar 

  196. Davies SM, Robison LL, Buckley JD, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol. 2001;19(5):1279–87.

    PubMed  Google Scholar 

  197. Allan JM, Wild CP, Rollinson S, et al. Polymorphism in glutathione S-transferase P1 is associated with susceptibility to chemotherapy-­induced leukemia. Proc Natl Acad Sci USA. 2001;98(20):11592–7.

    Article  PubMed  CAS  Google Scholar 

  198. Stanulla M, Schrappe M, Brechlin AM, Zimmermann M, Welte K. Polymorphisms within glutathione S-transferase genes (GSTM1, GSTT1, GSTP1) and risk of relapse in childhood B-cell precursor acute lymphoblastic leukemia: a case-control study. Blood. 2000;95(4):1222–8.

    PubMed  CAS  Google Scholar 

  199. Rocha JC, Cheng C, Liu W, et al. Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood. 2005;105(12): 4752–8.

    Article  PubMed  CAS  Google Scholar 

  200. de Jonge R, Hooijberg JH, van Zelst BD, et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood. 2005;106(2): 717–20.

    Article  PubMed  CAS  Google Scholar 

  201. Davies SM, Borowitz MJ, Rosner GL, et al. Pharmacogenetics of minimal residual disease response in children with B-precursor acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111(6):2984–90.

    Article  PubMed  CAS  Google Scholar 

  202. Yang JJ, Cheng C, Yang W, et al. Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA. 2009;301(4):393–403.

    Article  PubMed  CAS  Google Scholar 

  203. Cario G, Izraeli S, Teichert A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol. 2007;25(30):4813–20.

    Article  PubMed  CAS  Google Scholar 

  204. Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphatase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther. 2009;85(2):164–72.

    Article  PubMed  CAS  Google Scholar 

  205. Trevino LR, Shimasaki N, Yang W, et al. Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol. 2009;27(35):5972–8.

    Article  PubMed  CAS  Google Scholar 

  206. Sandlund JT, Harrison PL, Rivera G, et al. Persistence of lymphoblasts in bone marrow on day 15 and days 22 to 25 of remission induction predicts a dismal treatment outcome in children with acute lymphoblastic leukemia. Blood. 2002;100(1):43–7.

    Article  PubMed  CAS  Google Scholar 

  207. Mitchell C, Payne J, Wade R, et al. The impact of risk stratification by early bone-marrow response in childhood lymphoblastic leukaemia: results from the United Kingdom Medical Research Council trial ALL97 and ALL97/99. Br J Haematol. 2009;146(4):424–36.

    Article  PubMed  CAS  Google Scholar 

  208. Campana D. Role of minimal residual disease monitoring in adult and pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23(5):1083–98. vii.

    Article  PubMed  Google Scholar 

  209. Coustan-Smith E, Behm FG, Sanchez J, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet. 1998;351(9102):550–4.

    Article  PubMed  CAS  Google Scholar 

  210. Coustan-Smith E, Sancho J, Hancock ML. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood. 2000;96:2691–6.

    PubMed  CAS  Google Scholar 

  211. Coustan-Smith E, Sancho J, Behm FG, et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood. 2002;100(1):52–8.

    Article  PubMed  CAS  Google Scholar 

  212. Borowitz MJ, Devidas M, Hunger SP, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors. A Children’s Oncology Group study. Blood. 2008;111(12):5477–85.

    Article  PubMed  CAS  Google Scholar 

  213. Basso G, Veltroni M, Valsecchi MG, et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168–74.

    Article  PubMed  Google Scholar 

  214. Cave H, van der Werff ten Bosch J, Suciu S. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer-Childhood Leukemia Cooperative Group. N Engl J Med. 1998;339(9):591–8.

    Article  PubMed  CAS  Google Scholar 

  215. van Dongen JJ, Seriu T, Panzer-Grumayer ER, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet. 1998;352(9142):1731–8.

    Article  PubMed  Google Scholar 

  216. Flohr T, Schrauder A, Cazzaniga G, et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. 2008;22:771–82.

    Article  PubMed  CAS  Google Scholar 

  217. Conter V, Bartram CR, Valsecchi MG, et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood. 2010;115(16):3206–14.

    Article  PubMed  CAS  Google Scholar 

  218. Zhou J, Goldwasser MA, Li A, et al. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood. 2007;110(5):1607–11.

    Article  PubMed  CAS  Google Scholar 

  219. Stow P, Key L, Chen X, et al. Clinical significance of low levels of minimal residual disease at the end of remission induction therapy in childhood acute lymphoblastic leukemia. Blood. 2010;115(23): 4657–63.

    Article  PubMed  CAS  Google Scholar 

  220. Campana D. Molecular determinants of treatment response in acute lymphoblastic leukemia. Hematol Am Soc Hematol Educ Program. 2008;2008:366–73.

    Article  Google Scholar 

  221. van der Velden V, Corral L, Valsecchi MG, et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia. 2009;23(6):1073–9.

    Article  PubMed  CAS  Google Scholar 

  222. Conter V, Arico M, Valsecchi MG, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) acute lymphoblastic leukemia studies, 1982–1995. Leukemia. 2000;14(12):2196–204.

    Article  PubMed  CAS  Google Scholar 

  223. Kamps WA, Bokkerink JP, Hakvoort-Cammel FG, et al. BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991-1996). Leukemia. 2002;16(6):1099–111.

    Article  PubMed  CAS  Google Scholar 

  224. Duval M, Suciu S, Ferster A, et al. Comparison of Escherichia coli-asparaginase with Erwinia-asparaginase in the treatment of childhood lymphoid malignancies: results of a randomized European Organisation for Research and Treatment of Cancer-Children’s Leukemia Group phase 3 trial. Blood. 2002;99(8): 2734–9.

    Article  PubMed  CAS  Google Scholar 

  225. Chessells JM, Harrison G, Richards SM, et al. Failure of a new protocol to improve treatment results in paediatric lymphoblastic leukaemia: lessons from the UK Medical Research Council trials UKALL X and UKALL XI. Br J Haematol. 2002;118(2): 445–55.

    Article  PubMed  Google Scholar 

  226. Moghrabi A, Levy DE, Asselin B, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95-01 for children with acute lymphoblastic leukemia. Blood. 2007;109(3): 896–904.

    Article  PubMed  CAS  Google Scholar 

  227. Seibel NL, Steinherz PG, Sather HN, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111(5):2548–55.

    Article  PubMed  CAS  Google Scholar 

  228. Moricke A, Reiter A, Zimmermann M, et al. Risk-adjusted therapy of acute lymphoblastic leukemia can decrease treatment burden and improve survival: treatment results of 2169 unselected pediatric and adolescent patients enrolled in the trial ALL-BFM 95. Blood. 2008;111(9):4477–89.

    Article  PubMed  CAS  Google Scholar 

  229. Conter V, Arico M, Basso G, et al. Long-term results of the Italian Association of Pediatric Hematology and Oncology (AIEOP) Studies 82, 87, 88, 91 and 95 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):255–64.

    Article  PubMed  CAS  Google Scholar 

  230. Moricke A, Zimmermann M, Reiter A, et al. Long-term results of five consecutive trials in childhood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia. 2010;24(2):265–84.

    Article  PubMed  CAS  Google Scholar 

  231. Gaynon PS, Angiolillo AL, Carroll WL, et al. Long-term results of the children’s cancer group studies for childhood acute lymphoblastic leukemia 1983–2002: a Children’s Oncology Group Report. Leukemia. 2010;24(2):285–97.

    Article  PubMed  CAS  Google Scholar 

  232. Escherich G, Horstmann MA, Zimmermann M, Janka-­Schaub GE. Cooperative study group for childhood acute lymphoblastic leukaemia (COALL): long-term results of trials 82,85,89,92 and 97. Leukemia. 2010;24(2):298–308.

    Article  PubMed  CAS  Google Scholar 

  233. Kamps WA, van der Pal-de Bruin KM, Veerman AJ, Fiocco M, Bierings M, Pieters R. Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984 to 2004. Leukemia. 2010;24(2):309–19.

    Article  PubMed  CAS  Google Scholar 

  234. Silverman LB, Stevenson KE, O’Brien JE, et al. Long-term results of Dana-Farber Cancer Institute ALL Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1985–2000). Leukemia. 2010;24(2):320–34.

    Article  PubMed  CAS  Google Scholar 

  235. Schmiegelow K, Forestier E, Hellebostad M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  236. Salzer WL, Devidas M, Carroll WL, et al. Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984–2001: a report from the Children’s Oncology Group. Leukemia. 2010;24(2):355–70.

    Article  PubMed  CAS  Google Scholar 

  237. Tsuchida M, Ohara A, Manabe A, et al. Long-term results of Tokyo Children’s Cancer Study Group trials for childhood acute lymphoblastic leukemia, 1984–1999. Leukemia. 2010;24(2):383–96.

    Article  PubMed  CAS  Google Scholar 

  238. Liang DC, Yang CP, Lin DT, et al. Long-term results of Taiwan Pediatric Oncology Group studies 1997 and 2002 for childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):397–405.

    Article  PubMed  CAS  Google Scholar 

  239. Mitchell C, Richards S, Harrison CJ, Eden T. Long-term follow-up of the United Kingdom medical research council protocols for childhood acute lymphoblastic leukaemia, 1980–2001. Leukemia. 2010;24(2):406–18.

    Article  PubMed  CAS  Google Scholar 

  240. Reiter A, Schrappe M, Tiemann M, et al. Improved treatment results in childhood B-cell neoplasms with tailored intensification of therapy: A report of the Berlin-Frankfurt-Munster Group Trial NHL-BFM 90. Blood. 1999;94(10):3294–306.

    PubMed  CAS  Google Scholar 

  241. Patte C, Auperin A, Michon J, et al. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood. 2001;97(11):3370–9.

    Article  PubMed  CAS  Google Scholar 

  242. Spreafico F, Massimino M, Luksch R, et al. Intensive, very short-term chemotherapy for advanced Burkitt’s lymphoma in children. J Clin Oncol. 2002;20(12):2783–8.

    Article  PubMed  CAS  Google Scholar 

  243. Liang DC, Hung IJ, Yang CP, et al. Unexpected mortality from the use of E. coli L-asparaginase during remission induction therapy for childhood acute lymphoblastic leukemia: a report from the Taiwan Pediatric Oncology Group. Leukemia. 1999;13(2): 155–60.

    Article  PubMed  CAS  Google Scholar 

  244. Hurwitz CA, Silverman LB, Schorin MA, et al. Substituting dexamethasone for prednisone complicates remission induction in children with acute lymphoblastic leukemia. Cancer. 2000;88(8):1964–9.

    Article  PubMed  CAS  Google Scholar 

  245. Veerman AJ, Kamps WA, van den Berg H, et al. Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997–2004). Lancet Oncol. 2009; 10(10):957–66.

    Article  PubMed  CAS  Google Scholar 

  246. Bostrom BC, Sensel MR, Sather HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2003;101(10):3809–17.

    Article  PubMed  CAS  Google Scholar 

  247. Mitchell CD, Richards SM, Kinsey SE, Lilleyman J, Vora A, Eden TO. Benefit of dexamethasone compared with prednisolone for childhood acute lymphoblastic leukaemia: results of the UK Medical Research Council ALL97 randomized trial. Br J Haematol. 2005;129(6):734–45.

    Article  PubMed  CAS  Google Scholar 

  248. Igarashi S, Manabe A, Ohara A, et al. No advantage of dexamethasone over prednisolone for the outcome of standard- and intermediate-risk childhood acute lymphoblastic leukemia in the Tokyo Children’s Cancer Study Group L95-14 protocol. J Clin Oncol. 2005;23(27):6489–98.

    Article  PubMed  CAS  Google Scholar 

  249. Balis FM, Lester CM, Chrousos GP, Heideman RL, Poplack DG. Differences in cerebrospinal fluid penetration of corticosteroids: possible relationship to the prevention of meningeal leukemia. J Clin Oncol. 1987;5(2):202–7.

    PubMed  CAS  Google Scholar 

  250. Kadan-Lottick NS, Brouwers P, Breiger D, et al. A comparison of neurocognitive functioning in children previously randomized to dexamethasone or prednisone in the treatment of childhood acute lymphoblastic leukemia. Blood. 2009;114(9):1746–52.

    Article  PubMed  CAS  Google Scholar 

  251. Avramis VI, Martin-Aragon S, Avramis EV, Asselin BL. Pharmacoanalytical assays of Erwinia asparaginase (erwinase) and pharmacokinetic results in high-risk acute lymphoblastic leukemia (HR ALL) patients: simulations of erwinase population PK-PD models. Anticancer Res. 2007;27(4C):2561–72.

    PubMed  CAS  Google Scholar 

  252. Mitchell L, Lambers M, Flege S, et al. Validation of a predictive model for identifying an increased risk for thromboembolism in children with acute lymphoblastic leukemia: results of a multicenter cohort study. Blood. 2010;115(24):4999–5004.

    Article  PubMed  CAS  Google Scholar 

  253. Asselin BL. The three asparaginases. Comparative pharmacology and optimal use in childhood leukemia. Adv Exp Med Biol. 1999;457:621–9.

    Article  PubMed  CAS  Google Scholar 

  254. Vrooman LM, Supko JG, Neuberg DS, et al. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;54(2):199–205.

    PubMed  Google Scholar 

  255. Panetta JC, Gajjar A, Hijiya N, et al. Comparison of native E. coli and PEG asparaginase pharmacokinetics and pharmacodynamics in pediatric acute lymphoblastic leukemia. Clin Pharmacol Ther. 2009;86(6):651–8.

    Article  PubMed  CAS  Google Scholar 

  256. Silverman LB, Supko JG, Stevenson KE, et al. Intravenous PEG-asparaginase during remission induction in children and adolescents with newly diagnosed acute lymphoblastic leukemia. Blood. 2010;115(7):1351–3.

    Article  PubMed  CAS  Google Scholar 

  257. Hak LJ, Relling MV, Cheng C, et al. Asparaginase pharmacodynamics differ by formulation among children with newly diagnosed acute lymphoblastic leukemia. Leukemia. 2004;18(6): 1072–7.

    Article  PubMed  CAS  Google Scholar 

  258. Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med. 2006;354(2):166–78.

    Article  PubMed  CAS  Google Scholar 

  259. Schrappe M, Reiter A, Ludwig WD, et al. Improved outcome in childhood acute lymphoblastic leukemia despite reduced use of anthracyclines and cranial radiotherapy: results of trial ALL-BFM 90. German-Austrian-Swiss ALL-BFM Study Group. Blood. 2000;95(11):3310–22.

    PubMed  CAS  Google Scholar 

  260. Loh ML, Goldwasser MA, Silverman LB, et al. Prospective analysis of TEL/AML1-positive patients treated on Dana-Farber Cancer Institute Consortium Protocol 95-01. Blood. 2006;107(11):4508–13.

    Article  PubMed  CAS  Google Scholar 

  261. Van Der Werff ten Bosch J, Suciu S, Thyss A, et al. Value of intravenous 6-mercaptopurine during continuation treatment in childhood acute lymphoblastic leukemia and non-Hodgkin’s lymphoma: final results of a randomized phase III trial (58881) of the EORTC CLG. Leukemia. 2005;19(5):721–6.

    Article  PubMed  CAS  Google Scholar 

  262. Millot F, Suciu S, Philippe N, et al. Value of high-dose cytarabine during interval therapy of a Berlin-Frankfurt-Munster-based protocol in increased-risk children with acute lymphoblastic leukemia and lymphoblastic lymphoma: results of the European Organization for Research and Treatment of Cancer 58881 randomized phase III trial. J Clin Oncol. 2001;19(7):1935–42.

    PubMed  CAS  Google Scholar 

  263. Mikkelsen TS, Sparreboom A, Cheng C, et al. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol. 2011;29(13): 1771–8.

    Article  PubMed  CAS  Google Scholar 

  264. Lange BJ, Bostrom BC, Cherlow JM, et al. Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood. 2002;99(3):825–33.

    Article  PubMed  CAS  Google Scholar 

  265. Arico M, Valsecchi MG, Conter V, et al. Improved outcome in high-risk childhood acute lymphoblastic leukemia defined by prednisone-poor response treated with double Berlin-Frankfurt-Muenster protocol II. Blood. 2002;100(2):420–6.

    Article  PubMed  CAS  Google Scholar 

  266. Nachman JB, Sather HN, Sensel MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy [see comments]. N Engl J Med. 1998;338(23):1663–71.

    Article  PubMed  CAS  Google Scholar 

  267. Nachman JB, La MK, Hunger SP, et al. Young adults with acute lymphoblastic leukemia have an excellent outcome with chemotherapy alone and benefit from intensive postinduction treatment: a report from the Children’s Oncology Group. J Clin Oncol. 2009;27(31):5189–94.

    Article  PubMed  CAS  Google Scholar 

  268. Toyoda Y, Manabe A, Tsuchida M, et al. Six months of maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol. 2000;18(7): 1508–16.

    PubMed  CAS  Google Scholar 

  269. Chessells JM, Harrison G, Lilleyman JS, Bailey CC, Richards SM. Continuing (maintenance) therapy in lymphoblastic leukaemia: lessons from MRC UKALL X. Medical Research Council Working Party in Childhood Leukaemia. Br J Haematol. 1997;98(4):945–51.

    Article  PubMed  CAS  Google Scholar 

  270. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood. 1999;93(9):2817–23.

    PubMed  CAS  Google Scholar 

  271. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med. 1998;338(8):499–505.

    Article  PubMed  CAS  Google Scholar 

  272. Schmiegelow K, Heyman M, Gustafsson G, et al. The degree of myelosuppression during maintenance therapy of adolescents with B-lineage intermediate risk acute lymphoblastic leukemia predicts risk of relapse. Leukemia. 2010;24(4):715–20.

    Article  PubMed  CAS  Google Scholar 

  273. Mahoney Jr DH, Shuster J, Nitschke R, et al. Intermediate-dose intravenous methotrexate with intravenous mercaptopurine is superior to repetitive low-dose oral methotrexate with intravenous mercaptopurine for children with lower-risk B-lineage acute lymphoblastic leukemia: a Pediatric Oncology Group phase III trial. J Clin Oncol. 1998;16(1):246–54.

    PubMed  CAS  Google Scholar 

  274. Brandalise SR, Pinheiro VR, Aguiar SS, et al. Benefits of the intermittent use of 6-mercaptopurine and methotrexate in maintenance treatment for low-risk acute lymphoblastic leukemia in children: randomized trial from the Brazilian Childhood Cooperative Group-protocol ALL-9. J Clin Oncol. 2010;28(11):1911–8.

    Article  PubMed  CAS  Google Scholar 

  275. Harms DO, Gobel U, Spaar HJ, et al. Thioguanine offers no advantage over mercaptopurine in maintenance treatment of childhood ALL: results of the randomized trial COALL-92. Blood. 2003;102(8):2736–40.

    Article  PubMed  CAS  Google Scholar 

  276. Vora A, Mitchell CD, Lennard L, et al. Toxicity and efficacy of 6-thioguanine versus 6-mercaptopurine in childhood lymphoblastic leukaemia: a randomised trial. Lancet. 2006;368(9544):1339–48.

    Article  PubMed  CAS  Google Scholar 

  277. Stork LC, Matloub Y, Broxson E, et al. Oral 6-mercaptopurine versus oral 6-thioguanine and veno-occlusive disease in children with standard-risk acute lymphoblastic leukemia: report of the Children’s Oncology Group CCG-1952 clinical trial. Blood. 2010;115(14):2740–8.

    Article  PubMed  CAS  Google Scholar 

  278. Escherich G, Richards S, Stork LC, Vora AJ. Meta-analysis of randomised trials comparing thiopurines in childhood acute lymphoblastic leukaemia. Leukemia. 2011;25(6):953–9.

    Article  PubMed  CAS  Google Scholar 

  279. Schmiegelow K, Al-Modhwahi I, Andersen MK, et al. Methotrexate/6-mercaptopurine maintenance therapy influences the risk of a second malignant neoplasm after childhood acute lymphoblastic leukemia—results from the NOPHO ALL-92 study. Blood. 2009;113(24):6077–84.

    Article  PubMed  CAS  Google Scholar 

  280. Eden TO, Pieters R, Richards S. Systematic review of the addition of vincristine plus steroid pulses in maintenance treatment for childhood acute lymphoblastic leukaemia—an individual patient data meta-analysis involving 5659 children. Br J Haematol. 2010;149(5):722–33.

    Article  PubMed  CAS  Google Scholar 

  281. Conter V, Valsecchi MG, Silvestri D, et al. Pulses of vincristine and dexamethasone in addition to intensive chemotherapy for children with intermediate-risk acute lymphoblastic leukaemia: a multicentre randomised trial. Lancet. 2007;369(9556):123–31.

    Article  PubMed  CAS  Google Scholar 

  282. Price RA, Johnson WW. The central nervous system in childhood leukemia. I. The arachnoid. Cancer. 1973;31(3):520–33.

    Article  PubMed  CAS  Google Scholar 

  283. Balis FM, Poplack DG. Central nervous system pharmacology of antileukemic drugs. Am J Pediatr Hematol Oncol. 1989;11(1): 74–86.

    Article  PubMed  CAS  Google Scholar 

  284. Aur RJ, Simone J, Hustu HO, et al. Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood. 1971;37(3):272–81.

    PubMed  CAS  Google Scholar 

  285. Manera R, Ramirez I, Mullins J, Pinkel D. Pilot studies of species-specific chemotherapy of childhood acute lymphoblastic leukemia using genotype and immunophenotype. Leukemia. 2000;14(8):1354–61.

    Article  PubMed  CAS  Google Scholar 

  286. Ritchey AK, Pollock BH, Lauer SJ, Andejeski Y, Barredo J, Buchanan GR. Improved survival of children with isolated CNS relapse of acute lymphoblastic leukemia: a pediatric oncology group study. J Clin Oncol. 1999;17(12):3745–52.

    PubMed  CAS  Google Scholar 

  287. Barredo JC, Devidas M, Lauer SJ, et al. Isolated CNS relapse of acute lymphoblastic leukemia treated with intensive systemic chemotherapy and delayed CNS radiation: a pediatric oncology group study. J Clin Oncol. 2006;24(19):3142–9.

    Article  PubMed  CAS  Google Scholar 

  288. Reaman GH, Sposto R, Sensel MG, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol. 1999;17(2):445–55.

    PubMed  CAS  Google Scholar 

  289. Hilden JM, Dinndorf PA, Meerbaum SO, et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group. Blood. 2006;108(2):441–51.

    Article  PubMed  CAS  Google Scholar 

  290. Nagayama J, Tomizawa D, Koh K, et al. Infants with acute lymphoblastic leukemia and a germline MLL gene are highly curable with use of chemotherapy alone: results from the Japan Infant Leukemia Study Group. Blood. 2006;107(12):4663–5.

    Article  PubMed  CAS  Google Scholar 

  291. Matloub Y, Lindemulder S, Gaynon PS, et al. Intrathecal triple therapy decreases central nervous system relapse but fails to improve event-free survival when compared with intrathecal methotrexate: results of the Children’s Cancer Group (CCG) 1952 study for standard-risk acute lymphoblastic leukemia, reported by the Children’s Oncology Group. Blood. 2006;108(4):1165–73.

    Article  PubMed  CAS  Google Scholar 

  292. Schrauder A, Reiter A, Gadner H, et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J Clin Oncol. 2006;24(36):5742–9.

    Article  PubMed  Google Scholar 

  293. Leung W, Campana D, Yang J, et al. High success rate of hematopoietic cell transplantation regardless of donor source in children with very high-risk leukemia. Blood. 2011;118(2): 223–30.

    Article  PubMed  CAS  Google Scholar 

  294. Pui CH, Chessells JM, Camitta B, et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia. 2003;17(4):700–6.

    Article  PubMed  CAS  Google Scholar 

  295. Dreyer ZE, Dinndorf PA, Camitta B, et al. Analysis of the role of hematopoietic stem-cell transplantation in infants with acute lymphoblastic leukemia in first remission and MLL gene rearrangements: a report from the Children’s Oncology Group. J Clin Oncol. 2011;29(2):214–22.

    Article  PubMed  CAS  Google Scholar 

  296. Krejci O, van der Velden V, Bader P, et al. Level of minimal residual disease prior to haematopoietic stem cell transplantation predicts prognosis in paediatric patients with acute lymphoblastic leukaemia: a report of the Pre-BMT MRD Study Group. Bone Marrow Transplant. 2003;32(8):849–51.

    Article  PubMed  CAS  Google Scholar 

  297. Bader P, Kreyenberg H, Henze GH, et al. Prognostic value of minimal residual disease quantification before allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia: the ALL-REZ BFM Study Group. J Clin Oncol. 2009;27(3): 377–84.

    Article  PubMed  Google Scholar 

  298. Pui CH, Cheng C, Leung W, et al. Extended follow-up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med. 2003;349(7):640–9.

    Article  PubMed  Google Scholar 

  299. Pui CH, Pei D, Sandlund JT, et al. Risk of adverse events after completion of therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(31):7936–41.

    Article  PubMed  Google Scholar 

  300. Razzouk BI, Rose SR, Hongeng S, et al. Obesity in survivors of childhood acute lymphoblastic leukemia and lymphoma. J Clin Oncol. 2007;25(10):1183–9.

    Article  PubMed  Google Scholar 

  301. Hijiya N, Hudson MM, Lensing S, et al. Cumulative incidence of secondary neoplasms as a first event after childhood acute lymphoblastic leukemia. J Am Med Assoc. 2007;297(11):1207–15.

    Article  CAS  Google Scholar 

  302. Roberson JR, Raju S, Shelso J, Pui CH, Howard SC. Diabetic ketoacidosis during therapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer. 2008;50(6):1207–12.

    Article  PubMed  Google Scholar 

  303. Pui CH, Chesney CM, Weed J, Jackson CW. Altered von Willebrand factor molecule in children with thrombosis following asparaginase-prednisone-vincristine therapy for leukemia. J Clin Oncol. 1985;3(9):1266–72.

    PubMed  CAS  Google Scholar 

  304. Lipshultz SE, Colan SD, Gelber RD, Perez-Atayde AR, Sallan SE, Sanders SP. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med. 1991;324(12):808–15.

    Article  PubMed  CAS  Google Scholar 

  305. Childhood Acute Lymphoblastic Leukaemia Collaborative Group (CALLCG). Beneficial and harmful effects of anthracyclines in the treatment of childhood acute lymphoblastic leukaemia: a systematic review and meta-analysis. Br J Haematol. 2009;145(3): 376–88.

    Article  CAS  Google Scholar 

  306. Laningham FH, Kun LE, Reddick WE, Ogg RJ, Morris EB, Pui CH. Childhood central nervous system leukemia: historical perspectives, current therapy, and acute neurological sequelae. Neuroradiology. 2007;49(11):873–88.

    Article  PubMed  Google Scholar 

  307. Karimova EJ, Rai SN, Howard SC, et al. Femoral head osteonecrosis in pediatric and young adult patients with leukemia or lymphoma. J Clin Oncol. 2007;25(12):1525–31.

    Article  PubMed  Google Scholar 

  308. Kawedia JD, Kaste SC, Pei D, et al. Pharmacokinetic, pharmacodynamic, and pharmacogenetic determinants of osteonecrosis in children with acute lymphoblastic leukemia. Blood. 2011;117(8):2340–7.

    Article  PubMed  CAS  Google Scholar 

  309. Rivera GK, Hudson MM, Liu Q, et al. Effectiveness of intensified rotational combination chemotherapy for late hematologic relapse of childhood acute lymphoblastic leukemia. Blood. 1996;88(3): 831–7.

    PubMed  CAS  Google Scholar 

  310. Neale GA, Pui CH, Mahmoud HH, et al. Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia. 1994;8(5):768–75.

    PubMed  CAS  Google Scholar 

  311. Hagedorn N, Acquaviva C, Fronkova E, et al. Submicroscopic bone marrow involvement in isolated extramedullary relapses in childhood acute lymphoblastic leukemia: a more precise definition of “isolated” and its possible clinical implications, a collaborative study of the Resistant Disease Committee of the International BFM study group. Blood. 2007;110(12):4022–9.

    Article  PubMed  CAS  Google Scholar 

  312. Stass S, Mirro J, Melvin S, Pui CH, Murphy SB, Williams D. Lineage switch in acute leukemia. Blood. 1984;64(3):701–6.

    PubMed  CAS  Google Scholar 

  313. Beishuizen A, Verhoeven MA, Van Wering ER, Hahlen K, Hooijkaas H, van Dongen JJ. Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood. 1994;83(8):2238–47.

    PubMed  CAS  Google Scholar 

  314. Szczepanski T, van der Velden VH, Waanders E, et al. Late ­recurrence of childhood T-cell acute lymphoblastic leukemia frequently represents a second leukemia rather than a relapse: first evidence for genetic predisposition. J Clin Oncol. 2011;29(12): 1643–9.

    Article  PubMed  CAS  Google Scholar 

  315. Mullighan CG, Phillips LA, Su X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322(5906):1377–80.

    Article  PubMed  CAS  Google Scholar 

  316. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471(7337):235–9.

    Article  PubMed  CAS  Google Scholar 

  317. Greaves M. Cancer stem cells: back to Darwin? Semin Cancer Biol. 2010;20(2):65–70.

    Article  PubMed  Google Scholar 

  318. Gaynon PS, Qu RP, Chappell RJ, et al. Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse—the Children’s Cancer Group Experience. Cancer. 1998;82(7):1387–95.

    Article  PubMed  CAS  Google Scholar 

  319. Langmuir PB, Aplenc R, Lange BJ. Acute myeloid leukaemia in children. Best Pract Res Clin Haematol. 2001;14(1):77–93.

    Article  PubMed  CAS  Google Scholar 

  320. Buhrer C, Hartmann R, Fengler R, et al. Peripheral blast counts at diagnosis of late isolated bone marrow relapse of childhood acute lymphoblastic leukemia predict response to salvage chemotherapy and outcome. Berlin-Frankfurt-Munster Relapse Study Group. J Clin Oncol. 1996;14(10):2812–7.

    PubMed  CAS  Google Scholar 

  321. Beyermann B, Agthe AG, Adams HP, et al. Clinical features and outcome of children with first marrow relapse of acute lymphoblastic leukemia expressing BCR-ABL fusion transcripts. BFM Relapse Study Group. Blood. 1996;87(4):1532–8.

    PubMed  CAS  Google Scholar 

  322. Buhrer C, Hartmann R, Fengler R, et al. Superior prognosis in combined compared to isolated bone marrow relapses in salvage therapy of childhood acute lymphoblastic leukemia. Med Pediatr Oncol. 1993;21(7):470–6.

    Article  PubMed  CAS  Google Scholar 

  323. Henze G, Fengler R, Hartmann R, et al. Six-year experience with a comprehensive approach to the treatment of recurrent childhood acute lymphoblastic leukemia (ALL-REZ BFM 85). A relapse study of the BFM group. Blood. 1991;78(5):1166–72.

    PubMed  CAS  Google Scholar 

  324. Oudot C, Auclerc MF, Levy V, et al. Prognostic factors for leukemic induction failure in children with acute lymphoblastic leukemia and outcome after salvage therapy: the FRALLE 93 study. J Clin Oncol. 2008;26(9):1496–503.

    Article  PubMed  CAS  Google Scholar 

  325. Von Stackelberg A, Volzke E, Kuhl JS, et al. Outcome of children and adolescents with relapsed acute lymphoblastic leukaemia and non-response to salvage protocol therapy: a retrospective analysis of the ALL-REZ BFM Study Group. Eur J Cancer. 2011;47(1): 90–7.

    Article  Google Scholar 

  326. Ko RH, Ji L, Barnette P, et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a therapeutic advances in Childhood Leukemia Consortium study. J Clin Oncol. 2010;28(4):648–54.

    Article  PubMed  Google Scholar 

  327. Eckert C, Biondi A, Seeger K, et al. Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet. 2001;358(9289):1239–41.

    Article  PubMed  CAS  Google Scholar 

  328. Coustan-Smith E, Gajjar A, Hijiha N, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia. 2004;18:499–504.

    Article  PubMed  CAS  Google Scholar 

  329. Paganin M, Zecca M, Fabbri G, et al. Minimal residual disease is an important predictive factor of outcome in children with relapsed ‘high-risk’ acute lymphoblastic leukemia. Leukemia. 2008;22(12): 2193–200.

    Article  PubMed  CAS  Google Scholar 

  330. Raetz EA, Borowitz MJ, Devidas M, et al. Reinduction platform for children with first marrow relapse in acute lymphoblastic lymphoma. J Clin Oncol. 2008;26(24):3971–8.

    Article  PubMed  CAS  Google Scholar 

  331. Pui CH, Jeha S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov. 2007;6(2):149–65.

    Article  PubMed  CAS  Google Scholar 

  332. Kurtzberg J, Ernst TJ, Keating MJ, et al. Phase I study of 506U78 administered on a consecutive 5-day schedule in children and adults with refractory hematologic malignancies. J Clin Oncol. 2005;23(15):3396–403.

    Article  PubMed  CAS  Google Scholar 

  333. Brown P, Levis M, Shurtleff S, Campana D, Downing J, Small D. FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005;105(2):812–20.

    Article  PubMed  CAS  Google Scholar 

  334. Gilliland DG. FLT3 Inhibitors in the treatment of AML. Clin Adv Hematol Oncol. 2004;2(11):708–10.

    PubMed  Google Scholar 

  335. High LM, Szymanska B, Wilczynska-Kalak U, et al. The Bcl-2 homology domain 3 mimetic ABT-737 targets the apoptotic machinery in acute lymphoblastic leukemia resulting in synergistic in vitro and in vivo interactions with established drugs. Mol Pharmacol. 2010;77(3):483–94.

    Article  PubMed  CAS  Google Scholar 

  336. Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med. 2009;15(1):50–8.

    Article  PubMed  CAS  Google Scholar 

  337. Moellering RE, Cornejo M, Davis TN, et al. Direct inhibition of the NOTCH transcription factor complex. Nature. 2009;462(7270):182–8.

    Article  PubMed  CAS  Google Scholar 

  338. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF. Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood. 2000;96(5):1926–32.

    PubMed  CAS  Google Scholar 

  339. Iwamoto S, Mihara K, Downing JR, Pui CH, Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest. 2007;117(4): 1049–57.

    Article  PubMed  CAS  Google Scholar 

  340. Raetz EA, Cairo MS, Borowitz MJ, et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group pilot study. J Clin Oncol. 2008;26(22):3756–62.

    Article  PubMed  CAS  Google Scholar 

  341. Wayne AS, Kreitman RJ, Findley HW, et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res. 2010;16(6):1894–903.

    Article  PubMed  CAS  Google Scholar 

  342. Mussai F, Campana D, Bhojwani D, et al. Cytotoxicity of the ­anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol. 2010;150(3): 352–8.

    Article  PubMed  CAS  Google Scholar 

  343. Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7.

    Article  PubMed  CAS  Google Scholar 

  344. Handgretinger R, Zugmaier G, Henze G, Kreyenberg H, Lang P, von Stackelberg A. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia. 2011;25(1):181–4.

    Article  PubMed  CAS  Google Scholar 

  345. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295(5562):2097–100.

    Article  PubMed  CAS  Google Scholar 

  346. Leung W, Iyengar R, Turner V, et al. Determinants of antileukemia effects of allogeneic NK cells. J Immunol. 2004;172(1):644–50.

    PubMed  CAS  Google Scholar 

  347. Fujisaki H, Kakuda H, Shimasaki N, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009;69(9):4010–7.

    Article  PubMed  CAS  Google Scholar 

  348. Rubnitz JE, Inaba H, Ribeiro RC, et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol. 2010;28(6):955–99.

    Article  PubMed  CAS  Google Scholar 

  349. Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer. 2003;3(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  350. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood. 2005;106(1):376–83.

    Article  PubMed  CAS  Google Scholar 

  351. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.

    Article  PubMed  CAS  Google Scholar 

  352. Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66.

    Article  PubMed  CAS  Google Scholar 

  353. Holleman A, Cheok MH, den Boer ML, et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med. 2004;351(6):533–42.

    Article  PubMed  CAS  Google Scholar 

  354. Holleman A, den Boer ML, de Menezes RX, et al. The expression of 70 apoptosis genes in relation to lineage, genetic subtype, cellular drug resistance, and outcome in childhood acute lymphoblastic leukemia. Blood. 2006;107(2):769–76.

    Article  PubMed  CAS  Google Scholar 

  355. Lugthart S, Cheok MH, den Boer ML, et al. Identification of genes associated with chemotherapy crossresistance and treatment response in childhood acute lymphoblastic leukemia. Cancer Cell. 2005;7(4):375–86.

    Article  PubMed  CAS  Google Scholar 

  356. Cheok MH, Yang W, Pui CH, et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet. 2003;34(1):85–90.

    Article  PubMed  CAS  Google Scholar 

  357. Sorich MJ, Pottier N, Pei D, et al. In vivo response to methotrexate forecasts outcome of acute lymphoblastic leukemia and aas a distinct gene expression profile. PLoS Med. 2008;5(4):e83.

    Article  PubMed  CAS  Google Scholar 

  358. Cario G, Stanulla M, Fine BM, et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood. 2005;105(2):821–6.

    Article  PubMed  CAS  Google Scholar 

  359. Flotho C, Coustan-Smith E, Pei D, et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood. 2006;108(3): 1050–7.

    Article  PubMed  CAS  Google Scholar 

  360. Flotho C, Coustan-Smith E, Pei D, et al. A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood. 2007;110(4):1271–7.

    Article  PubMed  CAS  Google Scholar 

  361. Coustan-Smith E, Song G, Clark C, et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood. 2011;117(23):6267–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Campana M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Campana, D., Pui, CH. (2013). Diagnosis and Treatment of Childhood Acute Lymphoblastic Leukemia. In: Wiernik, P., Goldman, J., Dutcher, J., Kyle, R. (eds) Neoplastic Diseases of the Blood. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3764-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3764-2_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3763-5

  • Online ISBN: 978-1-4614-3764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics