Skip to main content

Mutant p53-Driven Tumorigenesis

  • Chapter
  • First Online:
p53 in the Clinics

Abstract

Most tumors inactivate the p53 tumor suppressor pathway via single nucleotide changes of the TP53 gene itself, which produces proteins with missense mutations. p53 mutant proteins clearly lose normal p53 activities. Some are partial loss of function mutations that retain some activities and probably cooperate with other changes in the p53 pathway to initiate tumor development. Many p53 mutants also exhibit gain-of-function and dominant negative properties. Several mouse models with p53 missense mutations have been generated and these now offer opportunities to study the effects of chemotherapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772

    PubMed  CAS  Google Scholar 

  • Barboza JA, Liu G, Ju Z et al (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci USA 103:19842–19847

    PubMed  CAS  Google Scholar 

  • Brachmann RK, Vidal M, Boeke JD (1996) Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 93:4091–4095

    PubMed  CAS  Google Scholar 

  • Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 9:701–713

    PubMed  CAS  Google Scholar 

  • Bullock AN, Henckel J, Fersht AR (2000) Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19:1245–1256

    PubMed  CAS  Google Scholar 

  • Cadwell C, Zambetti GP (2001) The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277:15–30

    PubMed  CAS  Google Scholar 

  • Caulin C, Nguyen T, Lang GA et al (2007) An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117:1893–1901

    PubMed  CAS  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR et al (2004) Regulation of p53 activity through lysine methylation. Nature 432:353–360

    PubMed  CAS  Google Scholar 

  • de Vries A, Flores ER, Miranda B et al (2002) Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc Natl Acad Sci USA 99:2948–2953

    PubMed  Google Scholar 

  • Dearth LR, Qian H, Wang T et al (2007) Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis 28:289–298

    PubMed  CAS  Google Scholar 

  • Deppert W, Gohler T, Koga H et al (2000) Mutant p53: “gain of function” through perturbation of nuclear structure and function? J Cell Biochem Suppl Suppl 35:115–122

    PubMed  CAS  Google Scholar 

  • Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26:5169–5183

    PubMed  CAS  Google Scholar 

  • Di Como CJ, Gaiddon C, Prives C (1999) p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol Cell Biol 19:1438–1449

    PubMed  Google Scholar 

  • Donehower LA (2009) Using mice to examine p53 functions in cancer, aging, and longevity. Cold Spring Harb Perspect Biol 1:a001081

    PubMed  Google Scholar 

  • Donehower LA, Lozano G (2009) 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 9:831–841

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Vogel H et al (1995) Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 14:16–22

    PubMed  CAS  Google Scholar 

  • Donehower LA, Harvey M, Slagle BL et al (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    PubMed  CAS  Google Scholar 

  • Eliyahu D, Goldfinger N, Pinhasi-Kimhi O et al (1988) Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 3:313–321

    PubMed  CAS  Google Scholar 

  • Epstein CB, Attiyeh EF, Hobson DA et al (1998) p53 mutations isolated in yeast based on loss of transcription factor activity: similarities and differences from p53 mutations detected in human tumors. Oncogene 16:2115–2122

    PubMed  CAS  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H et al (1992) Wild-type p53 activates transcription in vitro. Nature 358:83–86

    PubMed  CAS  Google Scholar 

  • Figueiredo BC, Sandrini R, Zambetti GP et al (2006) Penetrance of adrenocortical tumours associated with the germline TP53 R337H mutation. J Med Genet 43:91–96

    PubMed  CAS  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ (1989) The p53 proto-oncogene can act as a suppressor of transformation. Cell 57:1083–1093

    PubMed  CAS  Google Scholar 

  • Flores ER, Sengupta S, Miller JB et al (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7:363–373

    PubMed  CAS  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J et al (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887

    PubMed  CAS  Google Scholar 

  • Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606

    PubMed  CAS  Google Scholar 

  • Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    PubMed  CAS  Google Scholar 

  • Harvey M, McArthur MJ, Montgomery CA Jr et al (1993) Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 7:938–943

    PubMed  CAS  Google Scholar 

  • Harvey M, Vogel H, Morris D et al (1995) A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nat Genet 9:305–311

    PubMed  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A et al (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    PubMed  CAS  Google Scholar 

  • Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420:25–27

    PubMed  CAS  Google Scholar 

  • Hwang SJ, Cheng LS, Lozano G et al (2003a) Lung cancer risk in germline p53 mutation carriers: association between an inherited cancer predisposition, cigarette smoking, and cancer risk. Hum Genet 113:238–243

    PubMed  CAS  Google Scholar 

  • Hwang SJ, Lozano G, Amos CI et al (2003b) Germline p53 mutations in a cohort with childhood sarcoma: sex differences in cancer risk. Am J Hum Genet 72:975–983

    PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO et al (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4:1–7

    PubMed  CAS  Google Scholar 

  • Jackson MW, Berberich SJ (2000) MdmX protects p53 from Mdm2-mediated degradation. Mol Cell Biol 20:1001–1007

    PubMed  CAS  Google Scholar 

  • Jeffrey PD, Gorina S, Pavletich NP (1995) Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502

    PubMed  CAS  Google Scholar 

  • Jones SN, Roe AE, Donehower LA et al (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    PubMed  CAS  Google Scholar 

  • Jones SN, Hancock AR, Vogel H et al (1998) Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 95:15608–15612

    PubMed  CAS  Google Scholar 

  • Kato S, Han SY, Liu W et al (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424–8429

    PubMed  CAS  Google Scholar 

  • Kern SE, Kinzler KW, Baker SJ et al (1991) Mutant p53 proteins bind DNA abnormally in vitro. Oncogene 6:131–136

    PubMed  CAS  Google Scholar 

  • Kern SE, Pietenpol JA, Thiagalingam S et al (1992) Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–830

    PubMed  CAS  Google Scholar 

  • Koch JG, Gu X, Han Y et al (2007) Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm Genome 18:300–309

    PubMed  Google Scholar 

  • Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68:820–823

    PubMed  Google Scholar 

  • Kraiss S, Quaiser A, Oren M et al (1988) Oligomerization of oncoprotein p53. J Virol 62:4737–4744

    PubMed  CAS  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    PubMed  CAS  Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS et al (2000) Development of spontaneous mammary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157:2151–2159

    PubMed  CAS  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872

    PubMed  CAS  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS et al (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    PubMed  CAS  Google Scholar 

  • Lavigueur A, Maltby V, Mock D et al (1989) High incidence of lung, bone, and lymphoid tumors in transgenic mice overexpressing mutant alleles of the p53 oncogene. Mol Cell Biol 9:3982–3991

    PubMed  CAS  Google Scholar 

  • Levine AJ, Oren M (2009) The first 30 years of p53: growing ever more complex. Nat Rev Cancer 9:749–758

    PubMed  CAS  Google Scholar 

  • Li FP, Fraumeni JF Jr (1969) Soft-tissue sarcomas, breast cancer, and other neoplasms. A familial syndrome? Ann Intern Med 71:747–752

    PubMed  CAS  Google Scholar 

  • Li Y, Prives C (2007) Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26:2220–2225

    PubMed  CAS  Google Scholar 

  • Liu G, McDonnell TJ, de Oca M, Luna R et al (2000) High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc Natl Acad Sci USA 97:4174–4179

    PubMed  CAS  Google Scholar 

  • Liu G, Parant JM, Lang G et al (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36:63–68

    PubMed  CAS  Google Scholar 

  • Liu DP, Song H, Xu Y (2010) A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 29:949–956

    PubMed  CAS  Google Scholar 

  • Lozano G (2007) The oncogenic roles of p53 mutants in mouse models. Curr Opin Genet Dev 17:66–70

    PubMed  CAS  Google Scholar 

  • Lozano G, Liu G (1998) Mouse models dissect the role of p53 in cancer and development. Semin Cancer Biol 8:337–344

    PubMed  CAS  Google Scholar 

  • Luo JL, Yang Q, Tong WM et al (2001) Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20:320–328

    PubMed  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238

    PubMed  CAS  Google Scholar 

  • Mardis ER (2011) A decade’s perspective on DNA sequencing technology. Nature 470:198–203

    PubMed  CAS  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI (2006) Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127:1323–1334

    PubMed  CAS  Google Scholar 

  • Meek DW (1994) Post-translational modification of p53. Semin Cancer Biol 5:203–210

    PubMed  CAS  Google Scholar 

  • Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11:685–696

    PubMed  CAS  Google Scholar 

  • Milner J, Medcalf EA (1991) Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 65:765–774

    PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC et al (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    PubMed  CAS  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    PubMed  CAS  Google Scholar 

  • Morton JP, Timpson P, Karim SA et al (2010) Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 107:246–251

    PubMed  CAS  Google Scholar 

  • Muller PA, Caswell PT, Doyle B et al (2009) Mutant p53 drives invasion by promoting integrin recycling. Cell 139:1327–1341

    PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860

    PubMed  CAS  Google Scholar 

  • Petitjean A, Mathe E, Kato S et al (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    PubMed  CAS  Google Scholar 

  • Pfeifer GP, Hainaut P (2011) Next-generation sequencing: emerging lessons on the origins of human cancer. Curr Opin Oncol 23:62–68

    PubMed  Google Scholar 

  • Poyurovsky MV, Prives C (2006) Unleashing the power of p53: lessons from mice and men. Genes Dev 20:125–131

    PubMed  CAS  Google Scholar 

  • Prives C, White E (2008) Does control of mutant p53 by Mdm2 complicate cancer therapy? Genes Dev 22:1259–1264

    PubMed  CAS  Google Scholar 

  • Resnick MA, Inga A (2003) Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA 100:9934–9939

    PubMed  CAS  Google Scholar 

  • Riley T, Sontag E, Chen P et al (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9:402–412

    PubMed  CAS  Google Scholar 

  • Roemer K (1999) Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol Chem 380:879–887

    PubMed  CAS  Google Scholar 

  • Rovinski B, Benchimol S (1988) Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 2:445–452

    PubMed  CAS  Google Scholar 

  • Rowan S, Ludwig RL, Haupt Y et al (1996) Specific loss of apoptotic but not cell-cycle arrest function in a human tumor derived p53 mutant. EMBO J 15:827–838

    PubMed  CAS  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S et al (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841

    PubMed  CAS  Google Scholar 

  • Sharp DA, Kratowicz SA, Sank MJ et al (1999) Stabilization of the MDM2 oncoprotein by interaction with the structurally related MDMX protein. J Biol Chem 274:38189–38196

    PubMed  CAS  Google Scholar 

  • Sherr CJ, McCormick F (2002) The RB and p53 pathways in cancer. Cancer Cell 2:103–112

    PubMed  CAS  Google Scholar 

  • Shvarts A, Steegenga WT, Riteco N et al (1996) MDMX: a novel p53-binding protein with some functional properties of MDM2. EMBO J 15:5349–5357

    PubMed  CAS  Google Scholar 

  • Shvarts A, Bazuine M, Dekker P et al (1997) Isolation and identification of the human homolog of a new p53-binding protein, Mdmx. Genomics 43:34–42

    PubMed  CAS  Google Scholar 

  • Song H, Hollstein M, Xu Y (2007) p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9:573–580

    PubMed  CAS  Google Scholar 

  • Stad R, Little NA, Xirodimas DP et al (2001) Mdmx stabilizes p53 and Mdm2 via two distinct mechanisms. EMBO Rep 2:1029–1034

    PubMed  CAS  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A et al (2002) Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277:18817–18826

    PubMed  CAS  Google Scholar 

  • Terzian T, Suh YA, Iwakuma T et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22:1337–1344

    PubMed  CAS  Google Scholar 

  • Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923

    PubMed  CAS  Google Scholar 

  • Tsuda H, Hirohashi S (1994) Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. Int J Cancer 57:498–503

    PubMed  CAS  Google Scholar 

  • van Oijen MG, Slootweg PJ (2000) Gain-of-function mutations in the tumor suppressor gene p53. Clin Cancer Res 6:2138–2145

    PubMed  Google Scholar 

  • Varley JM (2003) Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 21:313–320

    PubMed  CAS  Google Scholar 

  • Varley JM, McGown G, Thorncroft M et al (1997a) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res 57:3245–3252

    PubMed  CAS  Google Scholar 

  • Varley JM, Thorncroft M, McGown G et al (1997b) A detailed study of loss of heterozygosity on chromosome 17 in tumours from Li-Fraumeni patients carrying a mutation to the TP53 gene. Oncogene 14:865–871

    PubMed  CAS  Google Scholar 

  • Varley JM, McGown G, Thorncroft M et al (1999) Are there low-penetrance TP53 Alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet 65:995–1006

    PubMed  CAS  Google Scholar 

  • Venkatachalam S, Shi YP, Jones SN et al (1998) Retention of wild-type p53 in tumors from p53 heterozygous mice: reduction of p53 dosage can promote cancer formation. EMBO J 17:4657–4667

    PubMed  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME et al (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    PubMed  CAS  Google Scholar 

  • Wagner J, Portwine C, Rabin K et al (1994) High frequency of germline p53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst 86:1707–1710

    PubMed  CAS  Google Scholar 

  • Wang Y, Suh YA, Fuller MY et al (2011) Restoring expression of wild-type p53 suppresses tumor growth but does not cause tumor regression in mice with a p53 missense mutation. J Clin Invest 121:893–904

    PubMed  CAS  Google Scholar 

  • Wu CC, Shete S, Amos CI et al (2006) Joint effects of germ-line p53 mutation and sex on cancer risk in Li-Fraumeni syndrome. Cancer Res 66:8287–8292

    PubMed  CAS  Google Scholar 

  • Xiong S, Pant V, Suh YA et al (2010) Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res 70:7148–7154

    PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething C et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermina Lozano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terzian, T., Lozano, G. (2013). Mutant p53-Driven Tumorigenesis. In: Hainaut, P., Olivier, M., Wiman, K. (eds) p53 in the Clinics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3676-8_5

Download citation

Publish with us

Policies and ethics