Skip to main content

The Pseudo-Riemannian Space-Time Manifold M4

  • Chapter
  • First Online:
  • 3210 Accesses

Abstract

We shall provide here a brief review of the special theory of relativity. Since the emphasis of this book is general relativity, we will state some of the results in this section without proof, for future application. For more details, the reader is referred to the references provided within this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    There are strong physical arguments for this assumption which are beyond the scope of this brief review of special relativity. The interested reader is referred to [55].

  2. 2.

    Often, the term “constant acceleration” in the relativity literature refers to the condition \({d}_{ij}\frac{\mathrm{d}{\mathcal{U}}^{i}(s)} {\mathrm{d}s} \frac{\mathrm{d}{\mathcal{U}}^{j}(s)} {\mathrm{d}s} = \mbox{ const.}\), which may be satisfied with nonconstant \(\frac{\mathrm{d}{\mathcal{U}}^{i}(s)} {\mathrm{d}s} = \frac{{\mathrm{d}}^{2}{{\mathcal {X}}}^{{\#}i}(s)} {\mathrm{d}{s}^{2}}\).

  3. 3.

    We are using Lorentz–Heaviside units. Especially, we have set c, the speed of light, to be unity to be consistent with units used throughout most of the book.

  4. 4.

    The equivalency between gravitational mass and inertial mass is assumed. Current experimental limits place the equivalency of these two types of mass to within 10 − 12 [226], and it is widely believed that they are equivalent.

  5. 5.

    The apparent zero-gravity effects experienced by astronauts in orbit are exactly analogous to the elevator example. The “zero-gravity” effects are due to the fact that the astronauts and the orbiting vehicle are in free fall and not due to the fact that gravity is too weak to have any appreciable effects. A quick calculation, using (2.79ii) and the remark after Example 1.3.28, reveals that the gravitational acceleration at 320 km above the Earth’s surface (low Earth orbit) is approximately 91% of its value at the surface of the Earth.

  6. 6.

    Consult Appendix 3 for the definition of a Segre characteristic.

  7. 7.

    Let \(\vec{\mathbf{V}}(\cdot \cdot )\) be a continuous vector field defined on Σ such that \(\vec{\mathbf{V}}(\cdot \cdot )\neq \vec{\mathbf{0}}(\cdot \cdot )\) for any point x on ∂Σ. If the index or winding number of \(\vec{\mathbf{V}}(\cdot \cdot )\) around ∂Σ is not zero, then there exists at least one x 0 ∈ Σ such that \(\vec{\mathbf{V}}({x}_{0}) =\vec{ \mathbf{0}}({x}_{0})\,\). (See [37].)

  8. 8.

    . The Helmotz theorem [159] on differentiable vector field \(\vec{\mathbf{W}}(\mathbf{x})\) in a three-dimensional domain

    allows the decomposition

    $${W}^{\alpha }(\mathbf{x}) = {\nabla }^{\alpha }h + {\eta }^{\alpha \beta \gamma }(\mathbf{x})\left [{\nabla }_{\!\gamma }{A}_{ \beta } -{\nabla }_{\!\beta }{A}_{\alpha }\right ].$$
    1. 2.

      For a closed, differential p-form of (1.58), the Hodge decomposition theorem [104] asserts that

      $$\begin{array}{rcl}{ W}_{{i}_{1},\ldots,{i}_{p}}(x)\,\mathrm{d}{x}^{{i}_{1}} \wedge \ldots \wedge \mathrm{d}{x}^{{i}_{p}} =\;& {h}_{{ i}_{1},\ldots,{i}_{p}}(x)\,\mathrm{d}{x}^{{i}_{1}} \wedge \ldots \wedge \mathrm{d}{x}^{{i}_{p}} & \\ \;& +\mathrm{d}\left [{\alpha }_{{i}_{1},\ldots,{i}_{p-1}}(x)\,\mathrm{d}{x}^{{i}_{1}} \wedge \ldots \wedge \mathrm{d}{x}^{{i}_{p-1}}\right ],& \\ {\nabla }_{\!j}{\nabla }^{j}{h}_{{ i}_{1},\ldots,{i}_{p}} =\;& 0. & \\ \end{array}$$
  9. 9.

    In an N-dimensional domain, at most N (reasonable), coordinate conditions hold. Therefore, a two-dimensional metric can be locally reduced to a conformally flat form. A three-dimensional metric can be locally brought to an orthogonal form. However, orthogonal coordinates may not exist in dimensions N > 3. The coordinate conditions \(\widehat{{\mathcal{C}}}^{m}\left (\widehat{{g}}_{ij}\left (\widehat{x}\right )\right ) = 0\) are not tensor field equations.

References

  1. Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, tensor analysis, and applications, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  2. Agrawal, P. and Das, A., Tensor, N.S. 28 53, 1974.

    Google Scholar 

  3. Aichelburg, P.C., Acta Phys. Austr. 34 279, 1971.

    Google Scholar 

  4. Alcubierre, M., Class. Quant. Grav. 11 L73, 1994.

    Google Scholar 

  5. Anton, H., Elementary linear algebra, John Wiley & Sons, New York, 2010.

    Google Scholar 

  6. Appelquist, T., Chodos, A. and Freund, P.G.O. (eds.), Modern Kaluza-Klein theories, Addison-Wesley Publishing Company, Menlo-Park, 1987.

    MATH  Google Scholar 

  7. Arnowitt, R., Deser, S. and Misner, C.W., in Gravitation: An introduction to current research, 227, John Wiley and Sons, New York - London, 1962.

    Google Scholar 

  8. Artin, E., in Galois theory: Lectures delivered at the University of Notre Dame. (Notre Dame Mathematical Lectures No. 2.) 1, University of Notre Dame, Notre Dame - London, 1971.

    Google Scholar 

  9. Ashby, N., Liv. Rev. Relat. 6 1, 2003. http://www.livingreviews.org/lrr-2003-1.

  10. Ashtekar, A., Lectures on non-perturbative canonical gravity, World Scientific Publishing, Singapore, 1991.

    MATH  Google Scholar 

  11. Atiyah, M.F., Hitchin, N.G., Drinfeld, V.G. and Manin, I., Phys. Lett. 65A 185, 1978.

    Google Scholar 

  12. Bailin, D. and Love, A., Rep. Prog. Phys. 50 1087, 1987.

    Google Scholar 

  13. Baker, J.C., et. al Mon. Not. Roy. Ast. Soc. 308 1173, 1999.

    Google Scholar 

  14. Barceló, C. and Visser, M., Int. J. Mod. Phys. D11 1553, 2002.

    Google Scholar 

  15. Barstow, M.A., Bond, H.E., Holberg, J.B., Burleigh, M.R., Hubeny, I. and Koester, D., Mon. Not. Roy. Ast. Soc. 362 1134, 2005.

    Google Scholar 

  16. Baum, H. and Juhl, A., Conformal differential geometry: Q-curvature and conformal holonomy, Birkhäuser Verlag, Basel - Boston - Berlin, 2010.

    MATH  Google Scholar 

  17. Bergmann, P.G., Introduction to the theory of relativity, Dover Publications, Mineola NY, 1976.

    Google Scholar 

  18. Biech, T. and Das, A., Gen. Rel. Grav. 18 93, 1986.

    Google Scholar 

  19. Biech, T. and Das, A., Can. J. Phys. 68 1403, 1990.

    Google Scholar 

  20. Birkhoff, G.D., Relativity and modern physics, Harvard University Press, Cambridge MA, 1923.

    MATH  Google Scholar 

  21. Birkhoff, G.D. and MacLane, S., A survey of modern algebra, A.K. Peters/CRC Press, Natick MA - Boca-Raton Fl, 1998.

    Google Scholar 

  22. Birrell, N.D. and Davies, P.C.W., Quantum fields in curved space, Cambridge University Press, Cambridge - New York, 1989.

    Google Scholar 

  23. Bishop, R.L. and Goldberg, S.I., Tensor analysis on manifolds, Dover Publications Inc., New York, 1980.

    Google Scholar 

  24. Bondi, H., Mon. Not. Roy. Ast. Soc. 107 410, 1947.

    Google Scholar 

  25. Bondi, H., van der Burg, M.G. and Metzner, A.W.K., Proc. Roy. Soc. Lond. A269 21, 1962.

    Google Scholar 

  26. Bonnor, W.B., Proc. Phys. Soc. Lond. A67 225, 1954.

    Google Scholar 

  27. Börner, G., The early universe: Facts and fiction, Springer-Verlag, Berlin - Heidelberg - New York, 1993.

    Google Scholar 

  28. Boyer, R.H. and Lindquist, R.W., J. Math. Phys. 8 265, 1967.

    Google Scholar 

  29. Brännlund, J., van den Hoogen, R. and Coley, A., Int. J. Mod. Phys. D19 1915, 2010.

    Google Scholar 

  30. Buchdahl, H.A., Quart. J. Math. Ox. 5 116, 1954.

    Google Scholar 

  31. Buchdahl, H.A., Phys. Rev. 116 1027, 1959.

    Google Scholar 

  32. Buck, R.C., Advanced calculus, McGraw-Hill, New York, 1965.

    MATH  Google Scholar 

  33. Buonanno, A., in Proceedings of Les Houches summer school, particle physics and cosmology: The fabric of spacetime, 3, Elsevier Publishing, Amsterdam, 2007.

    Google Scholar 

  34. Carmeli, M. and Kuzmenko, T., Int. J. Theo. Phys. 41 131, 2002.

    Google Scholar 

  35. Chandrasekhar, S., The mathematical theory of black holes, Oxford University Press, Oxford - New York, 1992.

    Google Scholar 

  36. Chazy, J., Bull. Soc. Math. France 52 17, 1924.

    Google Scholar 

  37. Chinn, W.G. and Steenrod, N.E., First concepts of topology, The Mathematical Associaton of America, Washington DC, 1966.

    MATH  Google Scholar 

  38. Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, manifolds and physics, North-Holland, Amsterdam, 1978.

    Google Scholar 

  39. Clark, G.L., Phil. Mag. 39 747, 1948.

    Google Scholar 

  40. Collas, P., Lett. Nuovo Cim. 21 68, 1978.

    Google Scholar 

  41. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E., Adv. Comput. Math. 5 329, 1996.

    Google Scholar 

  42. Cotton, E., Ann. Fac. Sci. Toul. II 1 385, 1899.

    Google Scholar 

  43. Courant, R. and Hilbert, D., Methods of mathematical physics, republished by John Wiley and Sons, New York, 1989.

    Google Scholar 

  44. Curzon, H.E.J., Proc. Lond. Math. Soc. 23 477, 1924.

    Google Scholar 

  45. Darmois, G., Memorial des sciences mathematiques XXV, Gauthier-Villars, Paris, 1927.

    Google Scholar 

  46. Das, A., Prog. Theor. Phys. 17 373, 1957.

    Google Scholar 

  47. Das, A., Prog. Theor. Phys. 18 554, 1957.

    Google Scholar 

  48. Das, A., Prog. Theor. Phys. 24 915, 1960.

    Google Scholar 

  49. Das, A., Proc.Roy. Soc. A. 267 1, 1962.

    Google Scholar 

  50. Das, A., J. Math. Phys. 4 45, 1963.

    Google Scholar 

  51. Das, A., J. Math. Phys. 12 232, 1971.

    Google Scholar 

  52. Das, A., J. Math. Phys. 12 1136, 1971.

    Google Scholar 

  53. Das, A., J. Math. Phys. 14 1099, 1973.

    Google Scholar 

  54. Das, A., J. Math. Phys. 20 740, 1979.

    Google Scholar 

  55. Das, A., The special theory of relativity: A mathematical exposition, Springer, New York, 1993.

    Book  MATH  Google Scholar 

  56. Das, A., Tensors: The mathematics of relativity theory  & continuum mechanics, Springer, New York - Berlin - London, 2007.

    Google Scholar 

  57. Das, A. and Agrawal, P., Gen. Rel. Grav. 5 359, 1974.

    Google Scholar 

  58. Das, A. and Aruliah, D., PINSA-A. 64 1, 1998.

    Google Scholar 

  59. Das, A., Biech, T. and Kay, D., J. Math. Phys. 31 2917, 1990.

    Google Scholar 

  60. Das, A. and Coffman, C.V., J. Math. Phys. 8 1720, 1967.

    Google Scholar 

  61. Das, A. and DeBenedictis, A., Prog. Theor. Phys. 108 119, 2001.

    Google Scholar 

  62. Das, A. and DeBenedictis, A., Gen. Rel. Grav. 36 1741, 2004.

    Google Scholar 

  63. Das, A., DeBenedictis, A. and Tariq, N., J. Math. Phys. 44 5637, 2003.

    Google Scholar 

  64. Das, A., Florides, P.S. and Synge, J.L., Proc. Roy. Soc. A. 263 451, 1961.

    Google Scholar 

  65. Das, A. and Kloster, S., J. Math. Phys. 21 2248, 1980.

    Google Scholar 

  66. Das, A. and Kloster, S., Phys. Rev. D62 104002, 2000.

    Google Scholar 

  67. Das, A., Tariq, N. and Biech, T., J. Math. Phys. 36 340, 1995.

    Google Scholar 

  68. Das, A., Tariq, N., Aruliah, D. and Biech, T., J. Math. Phys. 38 4202, 1997.

    Google Scholar 

  69. De, N., Prog. Theor. Phys. 33 545, 1965.

    Google Scholar 

  70. De, U.K., Acta. Phys. Polon. 30 901, 1966.

    Google Scholar 

  71. De, U.K. and Raychaudhouri, A.K., Proc. Roy. Soc. A. 303 47, 1968.

    Google Scholar 

  72. DeBenedictis, A., in Classical and quantum gravity research, 371, Nova Science Publishers Inc., New York, 2008.

    Google Scholar 

  73. DeBenedictis, A., Aruliah, D. and Das, A., Gen. Rel. Grav. 34 365, 2002.

    Google Scholar 

  74. DeBenedictis, A. and Das, A., Class. Quant. Grav. 18 1187, 2001.

    Google Scholar 

  75. DeBenedictis, A. and Das, A., Nucl. Phys. B653 279, 2003.

    Google Scholar 

  76. DeBenedictis, A., Das, A. and Kloster, S., Gen. Rel. Grav. 36 2481, 2004.

    Google Scholar 

  77. Dennemeyer, R., Introduction to partial differential equations and boundary value problems, McGraw-Hill, New York, 1968.

    MATH  Google Scholar 

  78. Dirac, P.A.M., Proc. Roy. Soc. A133 60, 1931.

    Google Scholar 

  79. Dixon, W.G., Phil. Trans. Roy. Soc. Lond. A. 277 59, 1974.

    Google Scholar 

  80. Doran, C., Phys. Rev. D61 067503, 2000.

    Google Scholar 

  81. Duncombe, R.L., Astron. J. 61 266, 1956.

    Google Scholar 

  82. Eddington, A.S., Nature 113 192, 1924.

    Google Scholar 

  83. Eddington, A.S., Mon. Not. Roy. Ast. Soc. 90 668, 1930.

    Google Scholar 

  84. Eddington, A.S., The mathematical theory of relativity, Cambridge University Press, Cambridge, 1965.

    Google Scholar 

  85. Eguchi, T. and Hanson, A.J., Phys. Lett. B74 249, 1978.

    Google Scholar 

  86. Ehlers, J., Gen. Rel. Grav. 25 1225, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  87. Einstein, A., Ann. der Phys. 18 639, 1905.

    Google Scholar 

  88. Einstein, A., Preuss. Akad. Wiss. Berlin, Sitz. 142, 1917.

    Google Scholar 

  89. Einstein, A., The meaning of relativity, Princeton University Press, Princeton, 1922.

    Book  MATH  Google Scholar 

  90. Eisenhart, L.P., Riemannian geometry, Princeton University Press, Princeton, 1926 (reprint 1997).

    MATH  Google Scholar 

  91. Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher transendental functions: Vol. II, McGraw-Hill, New York, 1953.

    Google Scholar 

  92. Ernst, F.J., Phys. Rev. 167 1175, 1968.

    Google Scholar 

  93. Ernst, F.J., Phys. Rev. 168 1415, 1968.

    Google Scholar 

  94. Evans, L.C., Partial differential equations, American Math. Society, Providence RI, 1998.

    MATH  Google Scholar 

  95. Faber, R.L., Differential geometry and relativity theory: An introduction, Marcel Dekker Inc., New York, 1983.

    MATH  Google Scholar 

  96. Falcke, H. and Hehl, F.W. (eds.), The galactic black hole: Lectures on general relativity and astrophysics, I.O.P. Publishing, Bristol - Philadelphia, 2003.

    Google Scholar 

  97. Feynman, R.P., Leighton, R.B. and Sands, M., The Feynman lectures on physics: Vol. II, Addison-Wesley Publishing Co., Reading MA, 1977.

    Google Scholar 

  98. Fierz, M. and Pauli, W., Proc. Roy. Soc. A173 211, 1939.

    Google Scholar 

  99. Finkelstein, D., Phys. Rev. 100 924, 1955.

    Google Scholar 

  100. Finkelstein, D., Phys. Rev. 110 965, 1958.

    Google Scholar 

  101. Fishback, E., Sudarsky, D., Szafer, A., Talmadge, C. and Anderson, S.H., Phys. Rev. Lett. 56 3, 1986.

    Google Scholar 

  102. Flamm, L., Phys. Zeitschr. 17 448, 1916.

    Google Scholar 

  103. Flanagan, E.E. and Hughes, S.A., New J. Phys. 7 204, 2005.

    Google Scholar 

  104. Flanders, H., Differential forms with applications to the physical sciences, Dover Publications, New York - London, 1989.

    MATH  Google Scholar 

  105. Friedmann, A., Z. Phys. 10 377, 1922. English translation (by G.F.R. Ellis and H. van Elst): Gen. Rel. Grav. 31 1991, 1999.

    Google Scholar 

  106. Frolov, V.P. and Novikov, I.D., Black hole physics: Basic concepts and new developments, Kluwer Academic Publishers, Dordrecht, 1998.

    MATH  Google Scholar 

  107. Furey, N. and DeBenedictis, A., Class. Quant. Grav. 22 313, 2005.

    Google Scholar 

  108. Gasperini, M., Elements of string cosmology, Cambridge University Press, Cambridge - New York - Melbourne, 2007.

    Book  MATH  Google Scholar 

  109. Gegenberg, J.D., On the stationary Einstein-Maxwell-Klein-Gordon equations, Ph.D. thesis, Simon Fraser University, Burnaby, 1981.

    Google Scholar 

  110. Gegenberg, J.D. and Das, A., Gen. Rel. Grav. 16 817, 1984.

    Google Scholar 

  111. Gegenberg, J.D. and Das, A., Phys. Lett. 112A 427, 1985.

    Google Scholar 

  112. Gelbaum, B.R. and Olmsted, J.M.H., Counterexamples in analysis, Holden-Day Inc., San Francisco, 1964.

    MATH  Google Scholar 

  113. Gel’fand, I.M., Lectures on linear algebra, R.E. Kreiger Pub. Co., New York, 1978.

    Google Scholar 

  114. Gel’fand, I.M., Milnos, R.A. and Shapiro, Z.A., Representations of the rotation and Lorentz groups and their applications, MacMillan Co., New York, 1963.

    Google Scholar 

  115. Gibbons, G.W., in General relativity: An Einstein centenary survey, 639, Cambridge University Press, Cambridge - New York, 1979.

    Google Scholar 

  116. Gödel, K., Rev. Mod. Phys. 21 447, 1949.

    Google Scholar 

  117. Green, M.B., Schwarz J.H. and Witten, E., Superstring theory: Volumes 1 & 2, Cambridge University Press, Cambridge - New York - Melbourne - Madrid, 1987.

    Google Scholar 

  118. Griffiths, J.B. and Podolský, J., Exact space-times in Einstein’s general relativity, Cambridge University Press, Cambridge - New York, 2009.

    Book  MATH  Google Scholar 

  119. Gullstrand, A., Arkiv. Mat. Astron. Fys. 16 1, 1922.

    Google Scholar 

  120. Gunion, J.F., Haber, H., Kane, G., Dawson, S. and Haber, H.E., The Higgs hunter’s guide, Westview Press, Boulder, 2000.

    Google Scholar 

  121. Halmos, P.R., Finite-dimensional vector spaces, Springer, New York, 1987.

    Google Scholar 

  122. Hamilton, M.J., On the combined Dirac-Einstein-Maxwell field equations, Ph.D. thesis, Simon Fraser University, Burnaby, 1976.

    Google Scholar 

  123. Hamermesh, M., Group theory and its application to physical problems, Addison-Wesley Publishing Co., Reading MA, 1962.

    MATH  Google Scholar 

  124. Hartle, J.B., Gravity: An introduction to Einstein’s general relativity, Pearson Education Inc. as Addison-Wesley Publishing Co., San Francisco - Boston - New York, 2003.

    Google Scholar 

  125. Hawking, S.W., Phys. Lett. A60 81, 1977.

    Google Scholar 

  126. Hawking, S.W. and Ellis, G.F.R., The large scale structure of space–time, Cambridge University Press, Cambridge - New York - Melbourne - Madrid, 1973.

    Book  MATH  Google Scholar 

  127. Hawking, S.W. and Turok, N., Phys. Lett. B425 25, 1998.

    Google Scholar 

  128. Heisenberg, W., Kortel, F. and Mitter, H., Zeits. Naturfor. 10A 425, 1955.

    Google Scholar 

  129. Henneaux, M. and Teitelboim, C., Commun. Math. Phys. 98 391, 1985.

    Google Scholar 

  130. Hicks, N.J., Notes on differential geometry, Van Nostrand Reinhold Co., London, 1971.

    Google Scholar 

  131. Hilbert, D., Konigl. Gesell. d. Wiss. Gottingen Nach. Math. Phys. Kl. 395, 1915.

    Google Scholar 

  132. Hocking, J.G. and Young, G.S., Topology, Addison-Wesley Publishing Co. Inc., Reading MA, 1961.

    MATH  Google Scholar 

  133. Hoffman, K. and Kunze, R., Linear algebra, Prentice-Hall, New Jersey, 1971.

    MATH  Google Scholar 

  134. Hogan, P.A., Lett. Nuovo Cim. 16 33, 1976.

    Google Scholar 

  135. Hoyle, F. and Narlikar, J.V., Proc. Roy. Soc. Lond. A. 277 1, 1963.

    Google Scholar 

  136. Hubble, E.P., Proc. Nat. Acad. Sci. 15 168, 1929.

    Google Scholar 

  137. Hulse, R.A. and Taylor, J.H. Jr., Nobel prize press release, http://nobelprize.org/nobel_prizes/physics/laureates/1993/.

  138. Iooss, G. and Joseph, D.D., Elementary stability and bifurcation theory, Springer-Verlag, New York - Berlin, 1997.

    Google Scholar 

  139. Iorio, L., Schol. Res. Exch. 2008 105235, 2008.

    Google Scholar 

  140. Israel, W., Nuovo Cim. B44 1, 1966.

    Google Scholar 

  141. Israel, W., Phys. Rev. 164 1776, 1967.

    Google Scholar 

  142. Israel, W. and Wilson, G.A., J. Math. Phys. 13 865, 1972.

    Google Scholar 

  143. Jackiw, R., Rev. Mod. Phys. 49 681, 1977.

    Google Scholar 

  144. Jebsen, J.T., Ark. Mat. Ast. Fys. 15 Nr.18, 1, 1921. English translation (by S. Antoci and D.E. Liebscher): Gen. Rel. Grav. 37 2253, 2005.

    Google Scholar 

  145. Jeffery, G.B., Proc. Roy. Soc. Lond. Series A. 99 123, 1921.

    Google Scholar 

  146. Kar, S., Dadhich, N. and Visser, M., Pramana. 63 859, 2004.

    Google Scholar 

  147. Kasner, E., Am. J. Math. 43 217, 1921.

    Google Scholar 

  148. Kerr, R.P., Phys. Rev. Lett. 11 237, 1963.

    Google Scholar 

  149. Kloster, S., Som, M.M. and Das, A., J. Math. Phys. 15 1096, 1974.

    Google Scholar 

  150. Kobayashi, S. and Nomizu, K., Foundations of differential geometry: Vol. I, Wiley-Interscience, New York, 1963.

    Google Scholar 

  151. Kostelich, E.J. and Armbruster, D., Introductory differential equations: From linearity to chaos, Addison-Wesley, Reading MA, 1996.

    Google Scholar 

  152. Kramer, D., Neugebauer, G. and Stephani, H., Fortschr. Phys. 20 1, 1972.

    Google Scholar 

  153. Kruskal, M.D., Phys. Rev. 119 1743, 1960.

    Google Scholar 

  154. Kutasov, D., Marino, M. and Moore, G., J.H.E.P. 0010 045, 2000.

    Google Scholar 

  155. Lanczos, C., Phys. Zeits. 23 537, 1922.

    Google Scholar 

  156. Lanczos, C., Ann. Phys. 74 518, 1924.

    Google Scholar 

  157. Lanczos, C., Ann. Math. 39 842, 1938.

    Google Scholar 

  158. Lanczos, C., Rev. Mod. Phys. 29 337, 1957.

    Google Scholar 

  159. Lanczos, C., The variational principles of mechanics, Dover Publications, Mineola NY, 1986.

    MATH  Google Scholar 

  160. Lee, C.Y., Branching theorem of the symplectic groups and representation theory of semi-simple Lie algebras, Ph.D. thesis, Simon Fraser University, Burnaby, 1973.

    Google Scholar 

  161. Lemaître, G., Ann. Soc. Sci. Brux. 47 49, 1927.

    Google Scholar 

  162. Lemaître, G., Ann. Soc. Sci. Brux. A53 51, 1933.

    Google Scholar 

  163. Lemaître, G., Compt. Rend. Acad. Sci. Paris. 196 903, 1933.

    Google Scholar 

  164. Lemos, J.P.S. and Zanchin, V.T., Phys. Rev. D54 3840, 1996.

    Google Scholar 

  165. Lense, J. and Thirring, H., Phys. Zs. 19 156, 1918.

    Google Scholar 

  166. Lichnerowicz, A., Théories relativistes de la gravitation et l’electromanétisme, Masson, Paris, 1955.

    Google Scholar 

  167. Liko, T., Overduin, J.M. and Wesson, P.S., Space Sci. Rev. 110 337, 2004.

    Google Scholar 

  168. Lobo, F.S.N., in Classical and quantum gravity research, 1, Nova Science Publishers Inc., New York, 2008.

    Google Scholar 

  169. London, F. and London, H., Proc. Roy. Soc. A. 149 71, 1935.

    Google Scholar 

  170. Lovelock, D., J. Math. Phys. 12 498, 1971.

    Google Scholar 

  171. Lovelock, D. and Rund, H., Tensors, differential forms, and variational principles, John Wiley and Sons, New York, 1975.

    MATH  Google Scholar 

  172. Maggiore, M., Gravitational Waves: Vol. 1, Oxford University Press, Oxford, 2008.

    Google Scholar 

  173. Majumdar, S.D., Phys. Rev. 72 390, 1947.

    Google Scholar 

  174. Mak, M.K. and Harko, T., Int. J. Mod. Phys. D11 1389, 2002.

    Google Scholar 

  175. Mann, R.B. and Vincent, D.E., Phys. Lett. 107A 75, 1985.

    Google Scholar 

  176. Marsden, J.E. and Tromba, A.J., Vector calculus, W. H. Freeman and Co., New York, 2003.

    Google Scholar 

  177. Martin, A.D. and Mizel, V.J., Introduction to linear algebra, McGraw-Hill, New York, 1966.

    Google Scholar 

  178. Mee, M., Higgs force: The symmetry-breaking force that makes the world an interesting place, Lutterworth Press, Cambridge, 2012.

    Google Scholar 

  179. Meissner, W. and Ochsenfeld, R., Naturwissensch. 21 787, 1933.

    Google Scholar 

  180. Melvin, M.A., Phys. Lett. 8 65, 1964.

    Google Scholar 

  181. Michelson, A.A. and Morley E.W., Am. J. Sci. 34 333, 1887.

    Google Scholar 

  182. Miller, J., Physics Today. 63 No. 7, 14, 2010.

    Google Scholar 

  183. Misner, C.W. and Wheeler, J.A., Ann. of Phys. 2 525, 1957.

    Google Scholar 

  184. Misner, C.W., Thorne, K.S. and Wheeler, J.A., Gravitation, W. H. Freeman and Co., San Francisco, 1973.

    Google Scholar 

  185. Morris, M.S. and Thorne, K.S., Am. J. of Phys. 56 395, 1988.

    Google Scholar 

  186. Mukhanov, V. and Winitzki, S., Introduction to quantum effects in gravity, Cambridge University Press, Cambridge, 2007.

    MATH  Google Scholar 

  187. Müller, A., Proceedings of the school on particle physics, gravity and cosmology: Proc. Sci. 017, 2007.

    Google Scholar 

  188. Myers, R.C. and Perry, M.J., Ann. Phys. 172 304, 1986.

    Google Scholar 

  189. Naber, G.L., The geometry of Minkowski spacetime: An introduction to the mathematics of the special theory of relativity, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

  190. Narlikar, J.V., An introduction to cosmology, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  191. Nehari, Z., Introduction to complex analysis, Allyn and Bacon, Boston, 1968.

    MATH  Google Scholar 

  192. Neugebauer, G., Habilitationsschrift, Jena, 1969.

    Google Scholar 

  193. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R., J. Math. Phys. 6 918, 1965.

    Google Scholar 

  194. Newman, E. and Penrose, R., J. Math. Phys. 3 566, 1962.

    Google Scholar 

  195. Noll, W., Notes on tensor analysis (prepared by Wang, C.C.), Mathematics Department, Johns Hopkins University, 1963.

    Google Scholar 

  196. Nordström, G., Verhandel. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk. 26 1201, 1918.

    Google Scholar 

  197. O’Neill, B., Elementary differential geometry, Academic Press, San Diego - Chestnut Hill MA, 1997.

    MATH  Google Scholar 

  198. O’Neill, B., The geometry of Kerr black holes, A. K. Peters, Wellesley MA, 1995.

    MATH  Google Scholar 

  199. Oriti, D. (ed.), Approaches to quantum gravity: Toward a new understanding of space, time and matter, Cambridge University Press, New York, 2009.

    MATH  Google Scholar 

  200. Padmanabhan, T., Structure formation in the universe, Cambridge University Press, Cambridge - New York - Melbourne, 1993.

    Google Scholar 

  201. Padmanabhan, T., Cosmology and astrophysics through problems, Cambridge University Press, Cambridge - New York - Melbourne, 1996.

    Google Scholar 

  202. Padmanabhan, T., After the first three minutes: The story of our universe, Cambridge University Press, Cambridge - New York - Melbourne, 1998.

    Book  Google Scholar 

  203. Painlevé, P., C. R. Acad. Sci. (Paris) 173 677, 1921.

    Google Scholar 

  204. Papapetrou, A., Proc. Roy. Soc. Irish Acad. A51 191, 1947.

    Google Scholar 

  205. Pechlaner, E. and Das, A., Gen. Rel. Grav. 5 459, 1974.

    Google Scholar 

  206. Peebles, P. J. E., Principles of physical cosmology, Princeton University Press, Princeton, 1993.

    Google Scholar 

  207. Penrose, R. and Rindler, W., Spinors and space–time: Volumes 1 & 2, Cambridge University Press, Cambridge - New York - Melbourne, 1987.

    Google Scholar 

  208. Perjes, Z., Phys. Rev. Lett. 27 1668, 1971.

    Google Scholar 

  209. Perlmutter, S., et. al. Astroph. J. 517 565, 1999.

    Google Scholar 

  210. Petrov, A.Z., Einstein spaces, Pergamon Press, London - New York - Toronto, 1969.

    MATH  Google Scholar 

  211. Pitjeva, E.V., Astron. Lett. 31 340, 2005.

    Google Scholar 

  212. Pugh, E.M. and Pugh G.E., Am. J. Phys. 35 153, 1967.

    Google Scholar 

  213. Rainich, G.Y., Trans. Amer. Math. Soc. 27 106, 1925.

    Google Scholar 

  214. Raychaudhuri, A.K., Phys. Rev. 98 1123, 1955.

    Google Scholar 

  215. Raychaudhuri, A.K., Z. Astroph. 43 161, 1957.

    Google Scholar 

  216. Raychaudhuri, A.K., Banerji, S. and Banerjee, A., General relativity, astrophysics, and cosmology, Springer-Verlag, New York, 1992.

    Book  Google Scholar 

  217. Regge, T. and Wheeler, J.A., Phys. Rev. 108 1063, 1957.

    Google Scholar 

  218. Reissner, H., Ann. der Phys. 50 106, 1916.

    Google Scholar 

  219. Robertson, H.P., Rev. Mod. Phys. 5 62, 1933.

    Google Scholar 

  220. Robinson, D.C., Phys. Rev. Lett. 34 905, 1975.

    Google Scholar 

  221. Rovelli, C., Quantum gravity, Cambridge University Press, Cambridge - New York, 2004.

    Book  MATH  Google Scholar 

  222. Ruban, V.A., Sov. Phys. J.E.T.P. 29 1027, 1969.

    Google Scholar 

  223. Sachs, R.K., Proc. Roy. Soc. Lond. A270 103, 1962.

    Google Scholar 

  224. Sagan, H., Introduction to the calculus of variations, McGraw-Hill, New York, 1969.

    Google Scholar 

  225. Sahni, V., Class. Quant. Grav. 19 3435, 2002.

    Google Scholar 

  226. Schlamminger, S., Choi, K.-Y., Wagner, T.A., Gundlach, J.H. and Adelberger E.G., Phys. Rev. Lett. 100 041101, 2008.

    Google Scholar 

  227. Schmidt, H.J., Gen. Rel. Grav. 37 1157, 2005.

    Google Scholar 

  228. Schouten, J.A., Math. Z. 11 58, 1921.

    Google Scholar 

  229. Schouten, J.A., Ricci calculus, Springer-Verlag, Berlin, 1954.

    MATH  Google Scholar 

  230. Schutz, B., A first course in general relativity, Cambridge University Press, Cambridge, 2009.

    Book  MATH  Google Scholar 

  231. Schwarzschild, K., Sitz. Preuss. Akad. Wiss. 1 189, 1916.

    Google Scholar 

  232. Sen, A., J.H.E.P. 9912 027, 1999.

    Google Scholar 

  233. Sen, A., Mod. Phys. Lett. A17 1797, 2002.

    Google Scholar 

  234. Sen, N., Ann. Phys. 73 365, 1924.

    Google Scholar 

  235. Smith, W.L. and Mann, R.B., Phys. Rev. D56 4942, 1997.

    Google Scholar 

  236. Sopova, V. and Ford, L.H., Phys. Rev. D66 045026, 2002.

    Google Scholar 

  237. Spivak, M., Calculus on manifolds, The Benjamin/Cummings Publishing Company, California, 1965.

    MATH  Google Scholar 

  238. Stephani, H., Relativity: An introduction to special and general relativity, Cambridge University Press, Cambridge, 2004.

    Book  Google Scholar 

  239. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C. and Herlt, E., Exact solutions of Einstein’s field equations, Cambridge University Press, 2003.

    Google Scholar 

  240. Sylvester, J.J., Phil. Mag. IV 138, 1852.

    Google Scholar 

  241. Synge, J.L., Proc. Roy. Irish Acad. A53 83, 1950.

    Google Scholar 

  242. Synge, J.L., Relativity: The special theory, North-Holland Publishing, Amsterdam, 1965. Reprinted 1980.

    Google Scholar 

  243. Synge, J.L., Relativity: The general theory, North-Holland Publishing, Amsterdam, 1966.

    Google Scholar 

  244. Synge, J.L. and Schild, A., Tensor calculus, University of Toronto Press, Toronto, 1966.

    Google Scholar 

  245. Szekeres, P., Publ. Math. Debrec. 7 285, 1960.

    Google Scholar 

  246. Thiemann, T., Modern canonical quantum general relativity, Cambridge University Press, Cambridge - New York, 2007.

    Book  MATH  Google Scholar 

  247. Thorne, K.S., Black holes and time warps: Einstein’s outrageous legacy, W.W. Norton and Co., New York - London, 1994.

    MATH  Google Scholar 

  248. Tipler, F.J., Phys. Rev. D9 2203, 1974.

    Google Scholar 

  249. Tolman, R.C., Proc. Nat. Acad. Sci. 20 169, 1934.

    Google Scholar 

  250. Tolman, R.C., Relativity, thermodynamics, and cosmology, Oxford University Press, Oxford, 1950.

    Google Scholar 

  251. Van Stockum, W.J., Proc. Roy. Soc. Edin. 57 135, 1937.

    Google Scholar 

  252. Vanzo, L., Phys. Rev. D56 6475, 1997.

    Google Scholar 

  253. Vishveshwara, C.V., J. Math. Phys. 9 1319, 1968.

    Google Scholar 

  254. Visser, M., Lorentzian wormholes: From Einstein to Hawking, A.I.P. Press, Woodbury NY, 1996.

    Google Scholar 

  255. Visser, M., in The Kerr spacetime: Rotating black holes in general relativity, 3, Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  256. Voorhees, B.H., Phys. Rev. D2 2119, 1970.

    Google Scholar 

  257. Wald, R.M., General relativity, University of Chicago Press, Chicago - London, 1984.

    MATH  Google Scholar 

  258. Wald, R.M., Quantum field theory in curved spacetime and black hole thermodynamics, University of Chicago Press, Chicago, 1994.

    MATH  Google Scholar 

  259. Walker, A.G., J. Lond. Math. Soc. 19 219, 1944.

    Google Scholar 

  260. Weinberg, S., Gravitation and cosmology: Principles and applications of the general theory of relativity, Wiley and Sons, New York, 1972.

    Google Scholar 

  261. Weyl, H., Ann. Phys. 54 117, 1917.

    Google Scholar 

  262. Wheeler, J.A., Phys. Rev. 97 511, 1955.

    Google Scholar 

  263. Wheeler, J.A., in Logic, methodology and philosophy of science: Proceedings of the 1960 international conference, 361, Stanford University Press, Stanford, 1962.

    Google Scholar 

  264. Will, C.M., Ann. Phys. 15 19, 2006.

    Google Scholar 

  265. Will, C.M., Liv. Rev. Relat. 9 3, 2006. http://www.livingreviews.org/lrr-2006-3.

  266. Willmore, T.J., An introduction to differential geometry, Oxford University Press, Oxford, 1959.

    MATH  Google Scholar 

  267. Wasserman, R.H., Tensors and manifolds with applications to physics, Oxford University Press, Oxford - New York, 2004.

    MATH  Google Scholar 

  268. Yano, K. and Bochner, S., Curvature and Betti numbers, Princeton University Press, Princeton, 1953.

    MATH  Google Scholar 

  269. York, J.W., Phys. Rev. Lett. 26 1656, 1971.

    Google Scholar 

  270. Zemanian, A.H., Distribution theory and transform analysis, Dover, New York, 2010.

    Google Scholar 

  271. Zenk, L.G., On the stationary gravitational fields, M.Sc. thesis, Simon Fraser University, Burnaby, 1975.

    Google Scholar 

  272. Zenk, L.G. and Das, A., J. Math. Phys. 19 535, 1978.

    Google Scholar 

  273. Zipoy, D.M., J. Math. Phys. 7 1137, 1966.

    Google Scholar 

  274. Zwiebach, B., A first course in string theory, Cambridge University Press, Cambridge - New York - Melbourne - Madrid - Cape Town, 2009.

    Book  MATH  Google Scholar 

  275. Zwillinger, D., Handbook of differential equations, Academic Press, San Diego - Chestnut Hill MA, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, A., DeBenedictis, A. (2012). The Pseudo-Riemannian Space-Time Manifold M4. In: The General Theory of Relativity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3658-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3658-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3657-7

  • Online ISBN: 978-1-4614-3658-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics