Skip to main content

Closed-Shell Metal Clusters

  • Chapter
  • First Online:
Metal Clusters and Nanoalloys

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Metal clusters are studied for many reasons, including modeling heterogeneous catalysts, understanding how physical properties and chemical reactivity evolve in the intermediate size regime between molecular species and solids, and trying to create building blocks for new materials [1]. The latter requires clusters, and cluster assemblies, that are stable under normal conditions. This is challenging. Taking the viewpoint of the solid state, metal clusters represent the ultra finely divided form of a solid, with an extremely high surface area and very large surface energy. They are inherently unstable [2]. So, one may ask, why go through the trouble of trying to make materials out of clusters, and how?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castleman AW Jr., Khanna SN, Sen A, Reber AC, Qian M, Davis KM, Peppernick SJ, Ugrinov A, Merritt MD (2007) Nano Lett 7:27342741

    Google Scholar 

  2. Häkkinen H, Manninen M (1996) Phys Rev Lett 76:1599–1602

    Google Scholar 

  3. Bae Y-C, Kumar V, Osanai H, Kawazoe Y (2005) Phys Rev B 72:125427

    Google Scholar 

  4. Xiao L, Wang L (2004) J Phys Chem A 108:8605

    CAS  Google Scholar 

  5. de Heer WA, Knight WD, Chou MY, Cohen ML (1987) Solid State Phys 40:93

    Google Scholar 

  6. Cox AJ, Louderback JG, Bloomfield LA (1993) Phys Rev Lett 71:923

    CAS  Google Scholar 

  7. Knickelbein MB (2001) Phys Rev Lett 86:5255

    CAS  Google Scholar 

  8. Shvartsburg A, Jarrold MF (2000) Phys Rev Lett 85:2530–2532

    CAS  Google Scholar 

  9. Wilcoxon JP, Provencio PP (2004) J Am Chem Soc 126:6402–6408

    CAS  Google Scholar 

  10. Hodak JH, Henglein A, Giersig M, Hartland GV (2000) J Phys Chem B 104:11708–11718

    CAS  Google Scholar 

  11. Leuchtner RE, Harms AC, Castleman AW Jr. (1989) J Chem Phys 91:2753

    CAS  Google Scholar 

  12. Riley SJ, Bunsenges B (1992) Phys Chem 96:1104

    CAS  Google Scholar 

  13. Knickelbein MB (1999) Annu Rev Phys Chem 50:79

    CAS  Google Scholar 

  14. Cao B, Starace AK, Judd OH, Jarrold MF (2009) J Am Chem Soc 131:2446–2447

    CAS  Google Scholar 

  15. Zhang W, Zhao H, Wang L (2004) J Phys Chem B 108:2140

    CAS  Google Scholar 

  16. Li S, Li H, Liu J, Xue X, Tian Y, He H, Jia Y (2007) Phys Reb B 76:045410

    Google Scholar 

  17. Zhang M, Fournier R (2009) Phys Rev B 79:043203

    Google Scholar 

  18. Bulusu S, Wang L-S, Zeng XC (2006) Proc Natl Acad Sci 103:8326

    CAS  Google Scholar 

  19. Breaux GA, Neal CM, Cao B, Jarrold MF (2005) Phys Rev B 71:073410

    Google Scholar 

  20. Lechtken A, Drebov N, Ahlrichs R, Kappes MM, Schooss D (2010) J Chem Phys 132:211102

    Google Scholar 

  21. Castleman AW Jr., Khanna SN (2009) J Phys Chem C 113:2664–2675

    CAS  Google Scholar 

  22. Connerade J-P (2003) Physica Scripta 68:C25–32

    CAS  Google Scholar 

  23. Fournier R (1995) J Chem Phys 102:5396–5407

    CAS  Google Scholar 

  24. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Nørskov JK (2006) Angew Chem Int Ed 45:2897–2901

    CAS  Google Scholar 

  25. Sinfelt JH (1999) Catal Today 53:305

    CAS  Google Scholar 

  26. Alexeev OS, Gates BC (2003) Ind Eng Chem Res 42:1571–1587

    CAS  Google Scholar 

  27. Liu P, Huang Y, Zhang Y, Bonder MJ, Hadjipanayis GC, Vlachos D, Deshmukh SR (2005) J Appl Phys 97:10J303

    Google Scholar 

  28. Hillenkamp M, Domenicantonio D, FĂ©lix C (2006) Rev Sci Instrum 77:025104

    Google Scholar 

  29. Gaudry M, et al. (2003) Phys Rev B 67:155409

    Google Scholar 

  30. Lecoultre S, Rydlo A, FĂ©lix C, Buttet J, Gilb S, Harbich W (2011) J Chem Phys 134:074302; ibid. 074303

    Google Scholar 

  31. Bein Th, Jacobs PA, Schmidt F (1982) In: Jacobs PA (ed) Metal microclusters in zeolites. Elsevier, Amsterdam

    Google Scholar 

  32. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) Acc Chem Res 36:20–30

    CAS  Google Scholar 

  33. Binns C (2001) Surf Sci Rep 44:1

    CAS  Google Scholar 

  34. Heiz U, Vanolli F, Trento L, Schneider W-D (1997) Rev Sci Instrum 68:1986

    CAS  Google Scholar 

  35. Heiz U, Bullock EL (2004) J Mater Chem 14:564

    CAS  Google Scholar 

  36. Ferrando R, Barcaro G, Fortunelli A (2009) Phys Rev Lett 102:216102

    CAS  Google Scholar 

  37. Ozin GA, Arsenault AC (2005) Nanochemistry, a chemical approach to nanomaterials. RSC Publishing, Cambridge

    Google Scholar 

  38. Shevchenko EV, Talapin D, Rogach AL, Kornowski A, Haase M, Weller H (2002) J Am Chem Soc 124:11480–11485

    CAS  Google Scholar 

  39. Femoni C, Iapalucci MC, Longoni G, Svensson PH (2001) Chem Commun 1776

    Google Scholar 

  40. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Science 318:430

    CAS  Google Scholar 

  41. Okumura K, Matsui H, Sanada T, Harao M, Honma T, Hirayama S, Niwa M, Catal J (2009) 265:89–98

    CAS  Google Scholar 

  42. Martin TP (1996) Phys Rep 273:199–241

    CAS  Google Scholar 

  43. Clemenger K (1985) Phys Rev B 32:1359

    CAS  Google Scholar 

  44. DeHeer WA (1993) Rev Mod Phys 65:611;

    CAS  Google Scholar 

  45. Brack M (1993) Rev Mod Phys 65:677

    CAS  Google Scholar 

  46. Li X, Wu H, Wang X-B, Wang L-S (1998) Phys Rev Lett 81:1909

    CAS  Google Scholar 

  47. Farges J, de Feraudy MF, Raoult B, Torchet J (1988) Adv Chem Phys 70:45

    Google Scholar 

  48. Smirnov BM, Strizhev AY, Berry RS (1999) J Chem Phys 110:7412–7420

    CAS  Google Scholar 

  49. Doye JPK, Wales DJ, Berry RS (1995) J Chem Phys 103:4234–4249

    CAS  Google Scholar 

  50. Wales DJ, Doye JPK, Dullweber A, Hodges MP, Naumkin FY, Calvo F, Hernandez-Rojas J, Middleton TF. The Cambridge cluster database. http://www-wales.ch.cam.ac.uk/CCD.html

  51. Fournier R, Zamiruddin S, Zhang M (2009) Can J Chem 87:1013–1021

    CAS  Google Scholar 

  52. Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  53. Methfessel M, Hennig D, Scheffler M (1992) Appl Phys A 55:442

    Google Scholar 

  54. Lian L, Su C-X, Armentrout PB (1992) J Chem Phys 96:7542

    CAS  Google Scholar 

  55. Fournier R, Cheng JBY, Wong A (2003) J Chem Phys 119:9444–9454

    CAS  Google Scholar 

  56. Li J, Li X, Zai H-J, Wang L-S (2003) Science 299:864

    CAS  Google Scholar 

  57. Sun Y, Fournier R (2007) Phys Rev A 75:063205

    Google Scholar 

  58. Sun Y, Zhang M, Fournier R (2008) Phys Rev B 77:075435

    Google Scholar 

  59. Sung M-W, Kawai R, Weare JH (1994) Phys Rev Lett 73:3552

    CAS  Google Scholar 

  60. Breaux GA, Hillman DA, Neal CM, Jarrold MF (2005) J Phys Chem A 109:8755–8759

    CAS  Google Scholar 

  61. Fournier R (2010) Can J Chem 88:1071–1078

    CAS  Google Scholar 

  62. Sun Y, Fournier R (2005) Comp Lett 1:210–219

    CAS  Google Scholar 

  63. Xing XP, Yoon B, Landman U, Parks JH (2006) Phys Rev B 74:165423

    Google Scholar 

  64. Wang L-M, Bulusu S, Zhai H-J, Zeng X-C, Wang L-S (2007) Angew Chem Int Ed 46:2915

    CAS  Google Scholar 

  65. Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn LT, Weidele H, Lievens P, Silverans RE (1999) Chem Phys Lett 314:227–233

    CAS  Google Scholar 

  66. Veldeman N, Höltzl T, Neukermans S, Veszprémi T, Nguyen MT, Lievens P (2007) Phys Rev A 76:011201

    Google Scholar 

  67. Gao Y, Bulusu S, Zeng XC (2005) J Am Chem Soc 127:156801

    Google Scholar 

  68. Kumar V (2009) Phys Rev A 79:085423

    Google Scholar 

  69. Li X, Kuznetsov AE, Zhang H-F, Boldyrev AI, and Wang L-S (2001) Science 291:859

    CAS  Google Scholar 

  70. Castleman AW Jr. (2008) J Phys Chem A 112:13316

    Google Scholar 

  71. Boldyrev AI, Wang L-S (2005) Chem Rev 105:3716

    CAS  Google Scholar 

  72. Dognon J-P, Clavaguéra C, Pyykkö P (2007) Angew Chem Intl Ed 46:1427–1430

    CAS  Google Scholar 

  73. Sun Y, Fournier R (2007) Phys Rev A 75:063205

    Google Scholar 

  74. Kappes MM, Schar M, Radi P, Schumacher E (1986) J Chem Phys 84:1863

    CAS  Google Scholar 

  75. Perdew JP (1988) Phys Rev B 37:6175–6180

    Google Scholar 

  76. Alonso JA (2005) Structure and properties of atomic nanoclusters. Imperial College Press, London, and references therein

    Google Scholar 

  77. Näher U, Hansen K (1994) J Chem Phys 101:5367

    Google Scholar 

  78. Hansen K, Näher U (1999) Phys Rev A 60:1240

    CAS  Google Scholar 

  79. Baladron C, Alonso JA (1988) Physica B 154:73–81

    CAS  Google Scholar 

  80. Fournier R (2001) J Chem Phys 115:2165–2177

    CAS  Google Scholar 

  81. Melko JJ, Clayborne PA, Jones CE Jr., Reveles JU, Gupta U, Khanna SN, Castleman AW Jr. (2010) J Phys Chem A 114:2045

    CAS  Google Scholar 

  82. Pyykkö P (2007) Nature Nanotech 2:273–274

    Google Scholar 

  83. Ferrer D, Torres-Castro A, Gao X, SepĂºlveda-GuzmĂ¡n S, Ortiz-MĂ©ndez U, JosĂ©-Yacaman M (2007) Nano Lett 7:1701–1705

    CAS  Google Scholar 

  84. Baletto F, Mottet C, Ferrando R (2003) Phys Rev Lett 90:135504

    CAS  Google Scholar 

  85. Goia DV, Matijević E (1998) New J Chem 22:1203

    CAS  Google Scholar 

  86. Mizukoshi Y, Fujimoto T, Nagata Y, Oshima R, Maeda Y (2000) J Phys Chem B 104:6028–6032

    CAS  Google Scholar 

  87. Park JI, Kim MG, Jun YW, Lee JS, Lee WR, Cheon J (2004) J Am Chem Soc 126:9072

    CAS  Google Scholar 

  88. Benten W, Nilius N, Ernst N, Freund H-J (2005) Phys Rev B 72:045403

    Google Scholar 

  89. Rosi NL, Mirkin CA (2005) Chem Rev 105:1547–1562

    CAS  Google Scholar 

  90. Rossi G, Rapallo A, Mottet C, Fortunelli A, Baletto F, Ferrando R (2004) Phys Rev Lett 93:105503

    CAS  Google Scholar 

  91. Sun Y, Zhang M, Fournier R (2008) Phys Rev B 77:075435

    Google Scholar 

  92. Knight WD, Clemenger K, deHeer WA, Saunders WA, Chou YM, Cohen ML (1984) Phys Rev Lett 52:2141–2143

    CAS  Google Scholar 

  93. Rapallo A, Rossi G, Ferrando R, Fortunelli A, Curley BC, Loyd LD, Tarbuck GM, Johnston RL (2005) J Chem Phys 122:194308

    Google Scholar 

  94. Ferrando R, Jellinek J, Johnston RL (2006) Chem Rev 108(3):845–910

    Google Scholar 

  95. Echt O, Kandler O, Leisner T, Miehle W, Recknagel E (1990) J Chem Soc Faraday Trans 86:2411–2415

    CAS  Google Scholar 

  96. Farges J, de Feraudy MF, Raoult B, Torchet J (1983) J Chem Phys 78:5067

    CAS  Google Scholar 

  97. Farges J, de Feraudy MF, Raoult B, Torchet J (1986) J Chem Phys 84:3491

    CAS  Google Scholar 

  98. Echt O, Sattler K, Recknagel E (1981) Phys Rev Lett 47:1121

    CAS  Google Scholar 

  99. Wei S, Shi Z, Castleman AW Jr. (1991) J Chem Phys 94:8604

    CAS  Google Scholar 

  100. Rayane D, Melinon P, Cabaud B, Hoarau P, Tribollet B, Broyer M (1989) Phys Rev A 39:6056–6059

    CAS  Google Scholar 

  101. Wang Q, Sun Q, Yu J-Z, Gu B-L, Kawazoe Y, Hashi Y (2000) Phys Rev A 62:063203

    Google Scholar 

  102. Li J, Li X, Zhai H-J, Wang LS (2003) Science 299:864

    CAS  Google Scholar 

  103. Johansson MP, Sundholm D, Vaara J (2004) Angew Chem Int Ed 43:2678

    CAS  Google Scholar 

  104. Bartels C, Hock C, Huwer J, Kuhnen R, Schwobel J, von Issendorff B (2009) Science 323:1323

    CAS  Google Scholar 

  105. Solovyov AV, Polozkov RG, Ivanov VK (2010) Phys Rev A 81:021202

    Google Scholar 

  106. Yamada Y, Castleman AW Jr. (1992) J Chem Phys 97:4543–4548

    CAS  Google Scholar 

  107. Lisinetskaya PG, Mitrić R (2011) Phys Rev A 83:033408

    Google Scholar 

  108. Bouwen W et al. (1999) Chem Phys Lett 314:227–233

    CAS  Google Scholar 

  109. Diederich Th, Döppner T, Fennel Th, Tiggesbäumker J, Meiwes-Broer K-H (2005) Phys Rev A 72:023203

    Google Scholar 

  110. Harms AC, Leuchtner RE, Sigsworth SW, Castleman AW Jr. (1990) J Am Chem Soc 112:5673

    CAS  Google Scholar 

  111. Cui LF, Huang X, Wang LM, Zubarev DY, Boldyrev AI, Li J, Wang L-S (2006) J Am Chem Soc 128:8390

    CAS  Google Scholar 

  112. Cui LF, Huang X, Wang LM, Wang L-S (2006) J Phys Chem A 110:10169–10172

    CAS  Google Scholar 

  113. Li X, Wang L-S (2002) Phys Rev B 65:153404

    Google Scholar 

  114. Rao BK, Khanna SN, Jena P (2001) J Chem Phys 115:778

    CAS  Google Scholar 

  115. Nakajima A, Sugioka T, Kishi T, Kaya K (1992) In: Jena P et al. (ed) Physics and chemistry of finite systems: from clusters to crystals, vol. 1. Kluwer Academic, The Netherlands

    Google Scholar 

  116. Wan J, Fournier R (2003) J Chem Phys 119:5949–5954

    CAS  Google Scholar 

  117. Pyykkö P, Runeberg N (2002) Angew Chem Int Ed 41:2174

    Google Scholar 

  118. Neukermans S, Janssens E, Chen ZF, Silverans RE, Schleyer PvR, Lievens P (2004) Phys Rev Lett 92:163401

    Google Scholar 

  119. Yeretzian C, Röthlisberger U, Schumacher E (1995) Chem Phys Lett 237:334–338

    CAS  Google Scholar 

  120. Ko YJ, Shakya A, Wang H, Grubisic A, Zheng W, Götz M, Ganteför G, Bowen KH, Jena P, Kiran B (2010) J Chem Phys 133:124308

    Google Scholar 

  121. Khanna SN, Jena P (1995) Phys Rev B 51:13705

    CAS  Google Scholar 

  122. Thomas OC, Zheng W-J, Lippa TP, Xu S-J, Lyapustina SA, Bowen KH Jr. (2001) J Chem Phys 114:9895–9900

    CAS  Google Scholar 

  123. Khanna SN, Rao BK, Jena P (2002) Phys Rev B 65:125105

    Google Scholar 

  124. Kumar V, Kawazoe Y (2001) Phys Rev B 64:115405

    Google Scholar 

  125. Roach P, Woodward WH, Reber AC, Khanna SN, Castleman AW Jr. (2010) Phys Rev B 81:195404

    Google Scholar 

  126. Zdetsis AD (2009) J Chem Phys 131:224310

    Google Scholar 

  127. Sun Q, Gong XG, Zheng QQ, Sun DY, Wang GH (1996) Phys Rev B 54:10896

    CAS  Google Scholar 

  128. Janssens E, et al. (2005) Phys Rev Lett 94:113401

    CAS  Google Scholar 

  129. Zhai H-J, Li J, Wang L-S (2004) J Chem Phys 121:8369-8374

    CAS  Google Scholar 

  130. Neukermans S, Janssens E, Tanaka H, Silverans RE, Lievens P (2003) Phys Rev Lett 90:033401

    CAS  Google Scholar 

  131. Chen D-L, Tian WQ, Sun C-C (2007) Phys Rev A 75:013201

    Google Scholar 

  132. Goicoechea JM, Sevov SV (2005) J Am Chem Soc 127:7676–7677

    CAS  Google Scholar 

  133. Sun Z-M, Xiao H, Li J, Wang L-S (2007) J Am Chem Soc 129:9560–9561

    CAS  Google Scholar 

  134. Kesanli B, Halsig J, Zavalij P, Fettinger JC, Lam YF, Eichhorn BW (2007) J Am Chem Soc 129:4567–4574

    CAS  Google Scholar 

  135. Briant CE, Theobald BRC, White JW, Bell LK, Mingos DMP, Welch AJ (1981) J Chem Soc Chem Commun 201

    Google Scholar 

  136. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G, Ackerson CJ, Whetten RL, Grönbeck H, Häkkinen H (2008) Proc Nat Acad Sci 105:9157

    CAS  Google Scholar 

  137. Heaven MW, Dass A, White PS, Holt K, Murray RW (2008) J Am Chem Soc 130:3754

    CAS  Google Scholar 

  138. Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H (2008) J Am Chem Soc 130:3756

    CAS  Google Scholar 

  139. Guo BC, Kerns KP, Castleman AW Jr. (1992) Science 255:1411

    CAS  Google Scholar 

  140. Guo BC, Wei S, Purnell J, Buzza SA, Castleman AW Jr. (1992) Science 256:515

    CAS  Google Scholar 

  141. Wei S, Guo BC, Purnell J, Buzza SA, Castleman AW Jr. (1992) J Phys Chem 96:4166

    CAS  Google Scholar 

  142. Kerns KP, Guo BC, Deng HT, Castleman AW Jr. (1994) J Chem Phys 101:8529–8534

    CAS  Google Scholar 

  143. Pilgrim JS, Duncan MA (1993) J Am Chem Soc 115:6958

    CAS  Google Scholar 

  144. Naumkin FY (2008) Chem Phys Lett 466:44–49

    CAS  Google Scholar 

  145. Haruta M (1997) Catal Today 36:153

    CAS  Google Scholar 

  146. Lopez N, Nørskov JK (2002) J Am Chem Soc 124:11262

    CAS  Google Scholar 

  147. Boyen H-G et al. (2002) Science 297:1533

    CAS  Google Scholar 

  148. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078

    CAS  Google Scholar 

  149. Chen S, et al. (1998) Science 280:2098

    CAS  Google Scholar 

  150. Whetten RL, et al. (1999) Acc Chem Res 32:397

    CAS  Google Scholar 

  151. Pyykkö P (2004) Angew Chem 114:2278

    Google Scholar 

  152. Pyykkö P (2006) J Organomet Chem 691:4336

    Google Scholar 

  153. Li X, Kiran B, Li J, Zhai H-J, Wang L-S (2002) Angew Chem Int Ed 41:4786

    CAS  Google Scholar 

  154. Teo BK, Shi X, Zhang H (1992) J Am Chem Soc 114:2743

    CAS  Google Scholar 

  155. Bergeron DE, Castleman AW Jr., Morisato T, Khanna SN (2004) Science 304:84

    CAS  Google Scholar 

  156. Bergeron DE, Roach PJ, Castleman AW Jr., Jones NO, Khanna SN (2005) Science 307:231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Fournier .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fournier, R., Bulusu, S. (2013). Closed-Shell Metal Clusters. In: Metal Clusters and Nanoalloys. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3643-0_3

Download citation

Publish with us

Policies and ethics