Skip to main content

Rescue of Compromised Lysosomes Enhances Degradation of Photoreceptor Outer Segments and Reduces Lipofuscin-Like Autofluorescence in Retinal Pigmented Epithelial Cells

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 801))

Abstract

Healthful cell maintenance requires the efficient degradative processing and removal of waste material. Retinal pigmented epithelial (RPE) cells have the onerous task of degrading both internal cellular debris generated through autophagy as well as phagocytosed photoreceptor outer segments. We propose that the inadequate processing material with the resulting accumulation of cellular waste contributes to the downstream pathologies characterized as age-related macular degeneration (AMD). The lysosomal enzymes responsible for clearance function optimally over a narrow range of acidic pH values; elevation of lysosomal pH by compounds like chloroquine or A2E can impair degradative enzyme activity and lead to a lipofuscin-like autofluorescence. Restoring acidity to the lysosomes of RPE cells can enhance activity of multiple degradative enzymes and is therefore a logical target in early AMD. We have identified several approaches to reacidify lysosomes of compromised RPE cells; stimulation of beta-adrenergic, A2A adenosine and D5 dopamine receptors each lowers lysosomal pH and improves degradation of outer segments. Activation of the CFTR chloride channel also reacidifies lysosomes and increases degradation. These approaches also restore the lysosomal pH of RPE cells from aged ABCA4−/− mice with chronically high levels of A2E, suggesting that functional signaling pathways to reacidify lysosomes are retained in aged cells like those in patients with AMD. Acidic nanoparticles transported to RPE lysosomes also lower pH and improve degradation of outer segments. In summary, the ability of diverse approaches to lower lysosomal pH and enhance outer segment degradation support the proposal that lysosomal acidification can prevent the accumulation of lipofuscin-like material in RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambati J, Fowler BJ (2012) Mechanisms of age-related macular degeneration. Neuron 75:26–39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Rad Biol Med 33:611–619

    Article  PubMed  CAS  Google Scholar 

  3. Curcio CA, Johnson M, Rudolf M, Huang JD (2011) The oil spill in ageing Bruch membrane. The Br J Ophthalmol 95:1638–1645

    Article  Google Scholar 

  4. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, Van Hoof F (1974) Lysosomotropic agents. Biochem Pharmacol 23:2495–2531

    Article  PubMed  CAS  Google Scholar 

  5. Altan N, Chen Y, Schindler M, Simon SM (1999) Tamoxifen inhibits acidification in cells independent of the estrogen receptor. Proc Nat Acad Sci USA 96:4432–4437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Liu J, Lu W, Reigada D, Nguyen J, Laties AM, Mitchell CH (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(-/-) mice: pharmacologic approaches and functional recovery. Invest Ophthalmol Vis Sci 49:772–780

    Article  PubMed Central  PubMed  Google Scholar 

  7. Mata NL, Weng J, Travis GH (2000) Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration. Proc Nat Acad Sci USA 97:7154–7159

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Sparrow JR, Parish CA, Hashimoto M, Nakanishi K (1999) A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture. Invest Ophthalmol Vis Sci 40:2988–2995

    PubMed  CAS  Google Scholar 

  9. Finnemann SC, Leung LW, Rodriguez-Boulan E (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Nat Acad Sci USA 99:3842–3847

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Lakkaraju A, Finnemann SC, Rodriguez-Boulan E (2007) The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells. Proc Nat Acad Sci USA 104:11026–11031

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Holz FG, Schutt F, Kopitz J, Eldred GE, Kruse FE, Volcker HE et al (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40:737–743

    PubMed  CAS  Google Scholar 

  12. Bergmann M, Schutt F, Holz FG, Kopitz J (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18:562–564

    PubMed  CAS  Google Scholar 

  13. Hayasaka S, Hara S, Mizuno K (1975) Degradation of rod outer segment proteins by cathepsin D. J Biochem 78:1365–1367

    PubMed  CAS  Google Scholar 

  14. Barrett A (1977) Proteinases in mammalian cells and tissues. Biomedical Press, New York

    Google Scholar 

  15. Baltazar GC, Guha S, Boesze-Battaglia K, Laties AM, Tyagi P, Kompella UB et al (2012) Acidic nanoparticles restore lysosomal pH and degradative function in compromised RPE cells. PloS One 7:e49635

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Guha S, Baltazar GC, Tu LA, Liu J, Lim JC, Lu W et al (2012) Stimulation of the D5 dopamine receptor acidifies the lysosomal pH of retinal pigmented epithelial cells and decreases accumulation of autofluorescent photoreceptor debris. J Neurochem 122:823–833

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Liu J, Lu W, Guha S, Baltazar GC, Coffey EE, Laties AM et al (2012) Cystic fibrosis transmembrane conductance regulator (CFTR) contributes to reacidification of alkalinized lysosomes in RPE cells. Am J Physiol Cell Physiol 303:C160–C169

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Peters S, Reinthal E, Blitgen-Heinecke P, Bartz-Schmidt KU, Schraermeyer U (2006) Inhibition of lysosomal degradation in retinal pigment epithelium cells induces exocytosis of phagocytic residual material at the basolateral plasma membrane. Ophthal Res 38:83–88

    Article  Google Scholar 

  19. Mahon GJ, Anderson HR, Gardiner TA, McFarlane S, Archer DB, Stitt AW (2004) Chloroquine causes lysosomal dysfunction in neural retina and RPE: implications for retinopathy. Curr Eye Res 28:277–284

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Guha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this paper

Cite this paper

Guha, S., Liu, J., Baltazar, G., Laties, A., Mitchell, C. (2014). Rescue of Compromised Lysosomes Enhances Degradation of Photoreceptor Outer Segments and Reduces Lipofuscin-Like Autofluorescence in Retinal Pigmented Epithelial Cells. In: Ash, J., Grimm, C., Hollyfield, J., Anderson, R., LaVail, M., Bowes Rickman, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 801. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3209-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3209-8_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3208-1

  • Online ISBN: 978-1-4614-3209-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics