Skip to main content

Glioma Stem Cell Research for the Development of Immunotherapy

  • Chapter
Glioma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 746))

Abstract

Malignant gliomas are characterized by its invasiveness and dissemination, resulting in frequent tumor recurrence after surgical resection and/or conventional chemotherapy and radiation therapy. Various strategies of active and passive immunotherapy in developing stages have shown promise to increase patient survival time with little severe side effects. In recent years, glioma stem cells had been isolated from patient tumor specimens. Biochemical and biological characterization of these cancer initiating cells implicated their critical roles in cancer growth, malignancy and resistance to conventional treatments. In this chapter, we review recent research progress in targeting brain cancer using neural stem cells delivered cytotoxic factors and immune regulation factor, dendritic cell based vaccination, with special emphasis on targeting glioma stem cells. We present evidence supporting the notion that glioma stem cells may be preferred therapeutic targets not only for conventional therapies, but also for immunotherapies. Future progress in glioma stem cell research may fundamentally improve the prospect of malignant glioma treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yuan X, Curtin J, Xiong Y et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 2004; 23(58):9392–9400.

    Article  PubMed  CAS  Google Scholar 

  2. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumour initiating cells. Nature 2004; 432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  3. Bruggeman SW, Hulsman D, Tanger E et al. Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 2007; 12(4):328–341.

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien CA, Pollett A, Gallinger S et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445(7123):106–110.

    Article  PubMed  Google Scholar 

  5. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445(7123):111–115.

    Article  PubMed  CAS  Google Scholar 

  6. Liao MJ, Zhang CC, Zhou B et al. Enrichment of a population of mammary gland cells that form mammospheres and have in vivo repopulating activity. Cancer Res 2007; 67(17):8131–8138.

    Article  PubMed  CAS  Google Scholar 

  7. Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449(7162):557–563.

    Article  PubMed  CAS  Google Scholar 

  8. Bao S, Wu Q, McLendon RE et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120):756–760.

    Article  PubMed  CAS  Google Scholar 

  9. Lee EJ, Russell T, Hurley L et al. Pituitary transcription factor-1 induces transient differentiation of adult hepatic stem cells into prolactin-producing cells in vivo. Mol Endocrinol 2005; 19(4):964–971.

    Article  PubMed  CAS  Google Scholar 

  10. Furnari FB, Huang HJ, Cavenee WK. Genetics and malignant progression of human brain tumours. Cancer Surv 1995; 25:233–275.

    PubMed  CAS  Google Scholar 

  11. Wright MH, Calcagno AM, Salcido CD et al. Brca1 breast tumors contain distinct CD44+/CD24-and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 2008; 10(1):R10.

    Article  PubMed  Google Scholar 

  12. Folkins C, Man S, Xu P et al. Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 2007; 67(8):3560–3564.

    Article  PubMed  CAS  Google Scholar 

  13. Wicha MS. Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 2008; 10(2):105.

    Article  PubMed  Google Scholar 

  14. Shmelkov SV, Butler JM, Hooper AT et al. CD133 expression is not restricted to stem cells and both CD133+ and CD133-metastatic colon cancer cells initiate tumors. J Clin Invest 2008; 118(6):2111–2120.

    PubMed  CAS  Google Scholar 

  15. Piccirillo SG, Reynolds BA, Zanetti N et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444(7120):761–765.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression and resemble stages in neurogenesis. Cancer Cell 2006; 9(3):157–173.

    Article  PubMed  CAS  Google Scholar 

  17. Dahmane N, Sanchez P, Gitton Y et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128(24):5201–5212.

    PubMed  CAS  Google Scholar 

  18. Katayam M, Yoshida K, Ishimori H et al. Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 2002; 59(2):107–115.

    Article  PubMed  Google Scholar 

  19. Mellinghoff IK, Wang MY, Vivanco I et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353(19):2012–2024.

    Article  PubMed  CAS  Google Scholar 

  20. Bachoo RM, Maher EA, Ligon KL et al. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1(3):269–277.

    Article  PubMed  CAS  Google Scholar 

  21. Fan QW, Knight ZA, Goldenberg DD et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9(5):341–349.

    Article  PubMed  CAS  Google Scholar 

  22. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S et al. PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 2006; 51(2):187–199.

    Article  PubMed  CAS  Google Scholar 

  23. Ligon KL, Huillard E, Mehta S et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007; 53(4):503–517.

    Article  PubMed  CAS  Google Scholar 

  24. Clement V, Sanchez P, de Tribolet N et al. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal and tumorigenicity. Curr Biol 2007; 17(2):165–172.

    Article  PubMed  CAS  Google Scholar 

  25. Choe G, Horvath S, Cloughesy TF et al. Analysis of the phosphatidylinositol 3’-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63(11):2742–2746.

    PubMed  CAS  Google Scholar 

  26. Backman SA, Ghazarian D, So K et al. Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Proc Natl Acad Sci USA 2004; 101(6):1725–1730.

    Article  PubMed  CAS  Google Scholar 

  27. Cully M, Elia A, Ong SH et al. grb2 heterozygosity rescues embryonic lethality but not tumorigenesis in pten+/-mice. Proc Natl Acad Sci USA 2004; 101(43):15358–15363.

    Article  PubMed  CAS  Google Scholar 

  28. Okumura K, Zhao M, Depinho RA et al. Cellular transformation by the MSP58 oncogene is inhibited by its physical interaction with the PTEN tumor suppressor. Proc Natl Acad Sci USA 2005; 102(8):2703–2706.

    Article  PubMed  CAS  Google Scholar 

  29. Dirks PB. Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration. J Neurooncol 2001; 53(2):203–212.

    Article  PubMed  CAS  Google Scholar 

  30. Aboody KS, Brown A, Rainov NG et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000; 97(23):12846–12851.

    Article  PubMed  CAS  Google Scholar 

  31. Benedetti S, Pirola B, Pollo B et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000; 6(4):447–450.

    Article  PubMed  CAS  Google Scholar 

  32. Ehtesham M, Kabos P, Gutierrez MA et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002; 62(24):7170–7174.

    PubMed  CAS  Google Scholar 

  33. Ehtesham M, Kabos P, Kabosova A et al. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002; 62(20):5657–5663.

    PubMed  CAS  Google Scholar 

  34. Yuan X, Hu J, Belladonna ML et al. Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 2006; 66(5):2630–2638.

    Article  PubMed  CAS  Google Scholar 

  35. Hu J, Yuan X, Belladonna ML et al. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 2006; 66(17):8887–8896.

    Article  PubMed  CAS  Google Scholar 

  36. Luptrawan A, Liu G, Yu JS. Dendritic cell immunotherapy for malignant gliomas. Rev Recent Clin Trials 2008; 3(1):10–21.

    Article  PubMed  Google Scholar 

  37. Yamanaka R. Cell-and peptide-based immunotherapeutic approaches for glioma. Trends Mol Med 2008; 14(5):228–235.

    Article  PubMed  CAS  Google Scholar 

  38. Ehtesham M, Yuan X, Kabos P et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 2004; 6(3):287–293.

    Article  PubMed  CAS  Google Scholar 

  39. Liau LM, Black KL, Martin NA et al. Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report. Neurosurg Focus 2000; 9(6):e8.

    Article  PubMed  CAS  Google Scholar 

  40. Yu JS, Wheeler CJ, Zeltzer PM et al. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 2001; 61(3):842–847.

    PubMed  CAS  Google Scholar 

  41. Yu JS, Liu G, Ying H et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004; 64(14):4973–4979.

    Article  PubMed  CAS  Google Scholar 

  42. Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9(5):391–403.

    Article  Google Scholar 

  43. Xu Q, Yuan X, Liu G et al. Hedgehog signaling regulates brain tumor initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas. Stem Cells 2008; 26(12):3018–26.

    Article  PubMed  CAS  Google Scholar 

  44. Spisek R, Kukreja A, Chen LC et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J Exp Med 2007; 204(4):831–840.

    Article  PubMed  CAS  Google Scholar 

  45. Garcia-Hernandez Mde L, Gray A, Hubby B et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Res 2008; 68(3):861–869.

    Article  PubMed  Google Scholar 

  46. Pellegatta S, Poliani PL, Corno D et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 2006; 66(21):10247–10252.

    Article  PubMed  CAS  Google Scholar 

  47. Manzo G. Cancer genesis: stem tumour cells as an MHC-null/HSP70-very high ‘primordial self’ escaping both MHC-restricted and MHC-non-restricted immunesurveillance. Med Hypotheses 2001; 56(6):724–730.

    Article  PubMed  CAS  Google Scholar 

  48. Odeberg J, Piao JH, Samuelsson EB et al. Low immunogenicity of in vitro-expanded human neural cells despite high MHC expression. J Neuroimmunol 2005; 161(1–2):1–11.

    Article  PubMed  CAS  Google Scholar 

  49. Liu G, Akasaki Y, Khong HT et al. Cytotoxic T-cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy. Oncogene 2005; 24(33):5226–5234.

    Article  PubMed  CAS  Google Scholar 

  50. Heisel SM, Ketter R, Keller A et al. Increased seroreactivity to glioma-expressed antigen 2 in brain tumor patients under radiation. PLoS ONE 2008; 3(5):e2164.

    Article  PubMed  Google Scholar 

  51. Okada H, Lieberman FS, Walter KA et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2007; 5:67.

    Article  PubMed  Google Scholar 

  52. Xu Q, Liu G, Yuan X et al. Antigen-specific T cell response from dendritic cell vaccination using cancer stem-like cell-associated antigens. Stem Cells 2009; 27(8):1734.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xu, Q., Yuan, X., Yu, J.S. (2012). Glioma Stem Cell Research for the Development of Immunotherapy. In: Yamanaka, R. (eds) Glioma. Advances in Experimental Medicine and Biology, vol 746. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3146-6_17

Download citation

Publish with us

Policies and ethics