Skip to main content

The modular degree, congruence primes, and multiplicity one

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

The modular degree and congruence number are two fundamental invariants of an elliptic curve over the rational field. Frey and Müller have asked whether these invariants coincide. We find that the question has a negative answer, and show that in the counterexamples, multiplicity one (defined below) does not hold. At the same time, we prove a theorem about the relation between the two invariants: the modular degree divides the congruence number, and the ratio is divisible only by primes whose squares divide the conductor of the elliptic curve. We discuss the ratio even in the case where the square of a prime does divide the conductor, and we study analogues of the two invariants for modular abelian varieties of arbitrary dimension.

Agashe was partially supported by National Science Foundation Grant No. 0603668. Stein was partially supported by National Science Foundation Grant No. 0653968.

To Serge Lang, our friend and teacher, someone who always knew a fact from a hole in the ground

Mathematics Subject Classification (2010): 11J81

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Altman and Steven Kleiman,Introduction to Grothendieck duality theory, Lecture Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  2. A. Agashe, K. Ribet and W. Stein, The Manin Constant, Pure and Applied Mathematics Quarterly, Special issue: In honor of John H. Coates (2006), to appear.

    Google Scholar 

  3. A. Agashe and W. A. Stein,Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455–484, with an appendix by J. Cremona and B. Mazur.

    Google Scholar 

  4. A. Abbes and E. Ullmo,À propos de la conjecture de Manin pour les courbes elliptiques modulaires, Compositio Math. 103 (1996), no. 3, 269–286.

    Google Scholar 

  5. W. Bosma, J. Cannon, and C. Playoust,The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265, Computational algebra and number theory (London, 1993).

    Google Scholar 

  6. C. Breuil, B. Conrad, F. Diamond, and R. Taylor,On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

    Google Scholar 

  7. S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron models, Springer-Verlag, Berlin, 1990.

    Google Scholar 

  8. B. Conrad,Grothendieck duality and base change, Lecture Notes in Mathematics, Vol. 1750, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  9. B. Conrad, Arithmetic moduli of generalized elliptic curves, J. Inst. Math. Jussieu 6 (2007), no. 2, 209–278.

    Google Scholar 

  10. A. C. Cojocaru and E. Kani, The modular degree and the congruence number of a weight 2 cusp form, Acta Arith. 114 (2004), no. 2, 159–167.

    Google Scholar 

  11. J. E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997, available athttp://www.maths.nott.ac.uk/personal/jec/book/.

  12. F. Diamond and J. Im,Modular forms and modular curves, Seminar on Fermat’s Last Theorem, Providence, RI, 1995, pp. 39–133.

    Google Scholar 

  13. F. Diamond, The Taylor-Wiles construction and multiplicity one, Invent. Math. 128 (1997), no. 2, 379–391.

    Google Scholar 

  14. P. Deligne and M. Rapoport, Les schémas de modules de courbes elliptiques, Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Berlin), Springer, 1973, Lecture Notes in Math., Vol. 349 pp. 143–316.

    Google Scholar 

  15. G. Frey,On ternary equations of Fermat type and relations with elliptic curves, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 527–548.

    Google Scholar 

  16. G. Frey and M. Müller, Arithmetic of modular curves and applications, Algorithmic algebra and number theory (Heidelberg, 1997), Springer, Berlin, 1999, pp. 11–48.

    Google Scholar 

  17. L. J. P. Kilford,Some non-Gorenstein Hecke algebras attached to spaces of modular forms, J. Number Theory 97 (2002), no. 1, 157–164.

    Google Scholar 

  18. N. M. Katz and B. Mazur,Arithmetic Moduli of Elliptic Curves, Princeton University Press, Princeton, N.J., 1985.

    Google Scholar 

  19. L. J. P. Kilford and Gabor Wiese, On the failure of the Gorenstein property for Hecke algebras of prime weight, Experiment. Math. 17 (2008), no. 1, 37–52. ℳ o (N)RMR2410114 (2009c:11075).

    Google Scholar 

  20. W-C. Li, Newforms and functional equations, Math. Ann. 212 (1975), 285–315.

    Google Scholar 

  21. B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 33–186 (1978).

    Google Scholar 

  22. B. Mazur,Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.

    Google Scholar 

  23. B. Mazur and K. A. Ribet,Two-dimensional representations in the arithmetic of modular curves, Astérisque (1991), no. 196–197, 6, 215–255 (1992), Courbes modulaires et courbes de Shimura (Orsay, 1987/1988).

    Google Scholar 

  24. M. R. Murty, Bounds for congruence primes, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Amer. Math. Soc., Providence, RI, 1999, pp. 177–192.

    Google Scholar 

  25. K. A. Ribet,Endomorphisms of semi-stable abelian varieties over number fields, Ann. Math. (2) 101 (1975), 555–562.

    Google Scholar 

  26. K. A. Ribet,Endomorphism algebras of abelian varieties attached to newforms of weight 2, Seminar on Number Theory, Paris 1979–80, Progr. Math., Vol. 12, Birkhäuser Boston, Mass., 1981, pp. 263–276.

    Google Scholar 

  27. K. A. Ribet, Mod p Hecke operators and congruences between modular forms, Invent. Math. 71 (1983), no. 1, 193–205.

    Google Scholar 

  28. K. A. Ribet, On modular representations of \(\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})\) arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476.

    Google Scholar 

  29. K. A. Ribet and W. A. Stein,Lectures on Serre’s conjectures, Arithmetic algebraic geometry (Park City, UT, 1999), IAS/Park City Math. Ser., Vol. 9, Amer. Math. Soc., Providence, RI, 2001, pp. 143–232.

    Google Scholar 

  30. J-P. Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, Vol. 117, Springer-Verlag, New York, 1988, Translated from the French.

    Google Scholar 

  31. G. Shimura,Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, Princeton, NJ, 1994, Reprint of the 1971 original, Kan Memorial Lectures, 1.

    Google Scholar 

  32. W. A. Stein et al., Sage Mathematics Software (Version 4.2), The Sage Development Team, 2009,http://www.sagemath.org.

  33. J. Sturm,On the congruence of modular forms, Number theory (New York, 1984–1985), Springer, Berlin, 1987, pp. 275–280.

    Google Scholar 

  34. J. Tilouine, Hecke algebras and the Gorenstein property, Modular forms and Fermat’s last theorem (Boston, MA, 1995), Springer, New York, 1997, pp. 327–342.

    Google Scholar 

  35. G. Wiese,Multiplicities of Galois representations of weight one, Algebra Number Theory 1 (2007), no. 1, 67–85, With an appendix by Niko Naumann.

    Google Scholar 

  36. A. Wiles,Modular curves and the class group of Q(ζ p ), Invent. Math. 58 (1980), no. 1, 1–35.

    Google Scholar 

  37. A. J. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 141 (1995), no. 3, 443–551.

    Google Scholar 

  38. D. Zagier, Modular parametrizations of elliptic curves, Canad. Math. Bull. 28 (1985), no. 3, 372–384.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Baker, F. Calegari, B. Conrad, J. Cremona, G. Frey, H. W. Lenstra, Jr. and B. Noohi for discussions and advice regarding this paper. We would especially like to thank B. Conrad for the material in the appendix and for his suggestions concerning a number of technical facts that are inputs to our arguments. The first author is also grateful to the Max-Planck-Institut für Mathematik for its hospitality during a visit when he partly worked on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amod Agashe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Agashe, A., Ribet, K.A., Stein, W.A. (2012). The modular degree, congruence primes, and multiplicity one. In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_2

Download citation

Publish with us

Policies and ethics