Skip to main content

The heat kernel, theta inversion and zetas on Г∖GK

  • Chapter
  • First Online:
Number Theory, Analysis and Geometry

Abstract

Direct and precise connections between zeta functions with functional equations and theta functions with inversion formulas can be made using various integral transforms, namely Laplace, Gauss, and Mellin transforms as well as their inversions. In this article, we will describe how one can initiate the process of constructing geometrically defined zeta functions by beginning inversion formulas which come from heat kernels. We state conjectured spectral expansions for the heat kernel, based on the so-called heat Eisenstein series defined in [JoL 04]. We speculate further, in vague terms, the goal of constructing a type of ladder of zeta functions and describe similar features from elsewhere in mathematics.

Mathematics Subject Classification (2010): 35K08, 11M36, 11F72

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Arthur, The Selberg trace formula for groups of Γ-rank one, Ann. of Math. 100 No. 2 (1974), 326–385.

    Google Scholar 

  2. J. Arthur, A Trace Formula for Reductive Groups I: Terms Associated to Classes in G({ Q}), Duke Math. J. 45 No. 4 (1978), 911–952.

    Google Scholar 

  3. J. Arthur, A Trace Formula for Reductive Groups II: Applications to a Truncation Operator, Compositio Mathematica 40 No. 1 (1980), 87–121.

    Google Scholar 

  4. J. Arthur, The Trace Formula and Hecke Operators, Number Theory, Trace Formulas, and Discrete Groups, Academic Press (1989), 11–27.

    Google Scholar 

  5. T. Asai, On a certain function analogous to logη(z), Nagoya Math. J. 40 (1970), 193–211.

    Google Scholar 

  6. M. Atiyah, R. Bott, V. Patodi, On the heat equation and the index theorem, Inventiones Math. 19 (1973), 279–330.

    Google Scholar 

  7. M. Atiyah, H. Donnelly, I. Singer, Eta invariants, signature defects of cusps, and values of L-functions, Ann. of Math. 118 (1983), 131–177.

    Google Scholar 

  8. D. Barbasch, H. Moscovici, L 2 index and the Selberg trace formula, J. Functional Analysis 53 (1983), 151–201.

    Google Scholar 

  9. A. F. Beardon, The Geometry of Discrete Groups, Springer Verlag, GTM, 1983.

    Book  MATH  Google Scholar 

  10. J. Bernstein and S. Gelbart, eds, Introduction to the Langlands Program, Birkhäuser Boston, 2004.

    Google Scholar 

  11. A. Borel, Arithmetic properties of linear algebraic groups, Proceedings International Congress of Mathematicians, Stockholm (1962), 10–22.

    Google Scholar 

  12. A. Borel, Introduction aux Groupes Arithmétiques, Hermann, Paris, 1969.

    MATH  Google Scholar 

  13. A. Borel and H. Garland, Laplacian and the Discrete Spectrum of an Arithmetic Group, Am. J. Math. 105 No. 2 (1983), 309–335.

    Google Scholar 

  14. U. Bunke and M. Olbrich, The wave kernel for the Laplacian on the classical locally symmetric space of rank one, theta functions, trace formulas, and the Selberg zeta function, with an appendix by Andreas Juhl. Ann. Global. Analysis Geom. 12 No. 4 (1994), 357–401; Appendix: 402–403 (1994).

    Google Scholar 

  15. H. Cramér, Studien über die Nullstellen der Riemannschen Zetafunktion. Math. Zeit. 4, (1919), 104–130.

    Google Scholar 

  16. J.-M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier coefficients of cusp forms, Invent. Math. 70 (1982), 219–288.

    Google Scholar 

  17. J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana U. Math. J. 32 (1983), 703–716.

    Google Scholar 

  18. J. Dodziuk and J. Jorgenson, Spectral Asymptotics on Degenerating Hyperbolic 3-Manifolds, Memoirs of the AMS No. 643, Vol. 135, 1998.

    Google Scholar 

  19. I. Efrat, The Selberg trace formula for { PSL}2(R), Mem. AMS 359 (1987).

    Google Scholar 

  20. I. Efrat and P. Sarnak, The determinant of the Eisenstein matrix and Hilbert class fields, Trans. AMS 290 (1985), 815–824.

    Google Scholar 

  21. J. Elstrodt, E. Grunewald, J. Mennicke, Eisenstein series on three dimensional hyperbolic spaces and imaginary quadratic fields, J. reine angew. Math. 360 (1985), 160–213.

    Google Scholar 

  22. J. Elstrodt, E. Grunewald, J. Mennicke, Zeta Functions of binary hermitian forms and special values of Eisenstein series on three-dimensional hyperbolic space, Math. Ann. 277 (1987), 655–708.

    Google Scholar 

  23. J. Elstrodt, E. Grunewald, J. Mennicke, Groups acting on hyperbolic space, Monograph in Mathematics, Springer Verlag, 1998.

    MATH  Google Scholar 

  24. M. Flensted-Jensen, Spherical functions on semisimple Lie groups: A method of reduction to the complex case, J. Funct. Anal. 30 (1978), 106–146.

    Google Scholar 

  25. M. Flensted-Jensen, Analysis on Non-Riemannian Symmetric Spaces, CBMS 61, 1986.

    Google Scholar 

  26. E. Frenkel, Recent advances in the Langlands program, Bull. AMS 41 No. 2 (2004), p 151–184.

    Google Scholar 

  27. M. Gaffney, The conservation property of the heat equation on Riemannian manifolds, Comm. Pure and Applied Math. 12 (1959), 1–11.

    Google Scholar 

  28. R. Gangolli, Asymptotic Behaviour of Spectra of Compact Quotients of Certain Symmetric Spaces, Acta Math. 121 (1968), 151–192.

    Google Scholar 

  29. R. Gangolli, Zeta functions of Selberg’s type for compact space forms of symmetric spaces of rank 1, Illinois J. Math. 21 (1977), 1–42.

    Google Scholar 

  30. R. Gangolli and V.S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergebnisse Math. 101, Springer Verlag, 1988.

    Google Scholar 

  31. R. Gangolli and G. Warner, Zeta functions of Selberg’s type for some noncompact quotients of symmetric spaces of rank one, Nagoya Math J. 78 (1980), 1–44.

    Google Scholar 

  32. L. Garding, Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France 88 (1960), 73–93.

    Google Scholar 

  33. S. Gelbart and S. Miller, Riemann’s zeta function and beyond, Bulletin AMS 41 No. 1 (2003), 50–112.

    Google Scholar 

  34. I. Gelfand, M. Graev, I. Piatetski-Shapiro, Representation theory and automorphic functions (Generalized Functions Vol. 6), Moscow 1966, Translation, Saunders, 1969.

    Google Scholar 

  35. I. M. Gelfand and M. A. Naimark, Unitäre Darstellungen der klassischen Gruppen, Akademie Verlag, Berlin, 1957; German translation of Unitary representations of the classical groups, (in Russian), Trudy Mat. Inst. Steklova 36 (1950), 1–288.

    Google Scholar 

  36. I. Gelfand, I. Piatetski-Shapiro, Representation theory and theory of automorphic functions, Am. Math. Soc. Transl. ser 2 26 (1963), 173–200.

    Google Scholar 

  37. W-D. Geyer, Unendliche algebraische Zahlkrper, bei denen jede Gleichung auflösbar von beschränkter Stufe ist, Journal of Number Theory 1 (1969), 346–374.

    Google Scholar 

  38. R. Godement, The spectral decomposition of cusp forms, Proc. Symp. Pure Math. AMS 9 (1966), 225–234.

    Google Scholar 

  39. P. Griffiths, Complex analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. 94 (1971), 21–51.

    Google Scholar 

  40. Harish-Chandra, Representations of semisimple Lie groups III, Trans. Am. Math. Soc. 76 (1954), 234–253.

    Google Scholar 

  41. Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math. 79 (1958), 241–310.

    Google Scholar 

  42. Harish-Chandra, Spherical functions on a semisimple Lie group II, Amer. J. Math. 80 (1958), 533–613.

    Google Scholar 

  43. Harish-Chandra, Invariant distributions on semisimple Lie groups, Pub. IHES 27 (1965), 5–54.

    Google Scholar 

  44. Harish-Chandra, Automorphic Forms on Semisimple Lie Groups, Springer Lecture Notes 62 (1968); Notes by J.G.M. Mars.

    Google Scholar 

  45. S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239–299.

    Google Scholar 

  46. S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.

    Google Scholar 

  47. G. Humbert, Sur la mesure de classes d’Hermite de discriminant donné dans un corps quadratique imaginaire, C.R. Acad. Sci. Paris Vol. 169 (1919), 448–454.

    Google Scholar 

  48. H. Iwaniec, Introduction to the Spectral Theory of Automorphic Forms, Biblioteca de la Revista Matematica Iberoamericana, Madrid, 1995.

    MATH  Google Scholar 

  49. C. Jordan, Mémoire sur l’équivalence des formes. J. École Polytechnique XLVIII (1880), 112-150.

    Google Scholar 

  50. J. Jorgenson and S. Lang, Basic analysis of regularized series and products, Springer Lecture Notes 1564, 1993.

    Google Scholar 

  51. J. Jorgenson and S. Lang, On Cramér’s theorem for general Euler products with functional equation. Math. Ann. 297 (1993), 383–416.

    Article  MathSciNet  MATH  Google Scholar 

  52. J. Jorgenson and S. Lang, Explicit Formulas for regularized products and series, Springer Lecture Notes 1593, 1994.

    Google Scholar 

  53. J. Jorgenson and S. Lang, Extension of analytic number theory and the theory of regularized harmonic series from Dirichlet series to Bessel series, Math. Ann. 306 (1996), 75–124.

    Google Scholar 

  54. J. Jorgenson and S. Lang, Hilbert-Asai Eisenstein series, regularized products, and heat kernels, Nagoya Math. J. Vol. 153 (1999), 155–188.

    MathSciNet  MATH  Google Scholar 

  55. J. Jorgenson and S. Lang, Spherical Inversion on SL n (R), Springer Verlag MIM, 2001.

    Google Scholar 

  56. J. Jorgenson and S. Lang, The Ubiquitous Heat Kernel, Mathematics Unlimited: 2001 and Beyond, Vol I, Engquist and Schmid eds, Springer Verlag 2001, 665–683.

    Google Scholar 

  57. J. Jorgenson and S. Lang, Heat Eisenstein series on SL n (C), to appear. Note in proof: This article as appeared as Memoirs of the AMS No. 946, Vol. 201, 2009.

    Google Scholar 

  58. J. Jorgenson and S. Lang, Spherical inversion on SL 2(C), in Heat Kernels and Analysis on manifolds, Graphs, and Metric Spaces, Contemporary Mathematics 338, AMS (2003), pp. 241–270 edited by P. Auscher, T. Coulhon, A. Grigoryan

    Google Scholar 

  59. J. Jorgenson and S. Lang, Gaussian spaces of test functions, to appear. Note in proof: This article as appeared as Math. Nachr. 278 (2005), 824–832.

    Google Scholar 

  60. J. Jorgenson and S. Lang, Heat Kernel and Theta Inversion on SL 2(C), to appear. Note in proof: This article as appeared as Springer Verlag MIM, 2008.

    Book  Google Scholar 

  61. J. Jorgenson, S. Lang and A. Sinton, Spherical inversion and totally geodesic embeddings of non-compact G ∕ K’s, in preparation.

    Google Scholar 

  62. J. Jorgenson and R. Lundelius, Convergence of the heat kernel and the resolvant kernel on degenerating hyperbolic Riemann surfaces of finite volume, Quaestiones Mathematicae 18 (1995), 345–363.

    Google Scholar 

  63. J. Jorgenson and R. Lundelius, Convergence of the normalized spectral function on degenerating hyperbolic Riemann surfaces of finite volume, J. Func. Analysis 149 (1997), 25–57.

    Google Scholar 

  64. J. Jorgenson and R. Lundelius, A regularized heat trace for hyperbolic Riemann surfaces of finite volume, Comment. Math. Helv. 72 (1997), 636–659.

    Google Scholar 

  65. S. Katok, Fuchsian Groups, University of Chicago press, 1992.

    Google Scholar 

  66. T. Kubota, Über diskontinuierlicher Gruppen Picardschen Typus und zugehörige Eisensteinsche Reihen, Nagoya Math. J. 32 (1968), 259–271.

    Google Scholar 

  67. T. Kutoba, Elementary Theory of Eisenstein series, Kodansha and John Wiley, Tokyo-New York, 1973,

    Google Scholar 

  68. S. Lang, Elliptic functions, Addison Wesley, 1973; Second Edition, Springer Verlag, 1987.

    Google Scholar 

  69. S. Lang, SL 2(R), Addison Wesley 1973, Springer Verlag 1985.

    Google Scholar 

  70. S. Lang, Real and Functional Analysis, Springer Verlag, 1993.

    Google Scholar 

  71. S. Lang, Algebraic Number Theory, Addison Wesley 1970; Second Edition, Springer Verlag, 1994.

    Google Scholar 

  72. S. Lang, Undergraduate Analysis, Second Edition, Springer Verlag, 1997.

    Google Scholar 

  73. S. Lang, Math Talks for Undergraduates, Springer Verlag, 1999.

    Google Scholar 

  74. S. Lang, Introduction to Differentiable Manifolds, Second Edition, Springer Verlag 2002.

    MATH  Google Scholar 

  75. S. Lang, Collected Papers, Volume V, with Jay Jorgenson, 1993–1999, Springer Verlag, 2001.

    Google Scholar 

  76. R. P. Langlands, Eisenstein Series, Proc. Symposium in Pure Mathematics, AMS, Boulder Colorado 1966, Algebraic Groups and Discontinuous Subgroups, Borel and Mostow, editors, 235–252.

    Google Scholar 

  77. R. P. Langlands, On the functional equations satisfied by Eisenstein series, Springer Lecture Notes 544, 1976.

    Google Scholar 

  78. H. Maass, Über eine neue Art von Nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funtionalgleichungen, Math. Ann. 121 (1949), 141–183.

    Google Scholar 

  79. H.P. McKean, Selberg’s Trace Formula as Applied to a Compact Riemann Surface, Comm. Pure and Applied Math. XXV (1972), 225–246.

    Google Scholar 

  80. C. Moeglin and J.-L. Waldspurger, Décomposition spectrale et séries d’Eisenstein, Birkhäuser Progress in Mathematics 113 Boston, 1994.

    Google Scholar 

  81. W. Müller, Spectral theory for Riemannian manifolds with cusps and a related trace formula, Math. Nachrichten 111 (1983), 197–288.

    Google Scholar 

  82. W. Müller, Signature defects of cusps of Hilbert modular varieties and values of L-series at s = 1, J. Diff. Geom. 20 (1984), 55–119.

    Google Scholar 

  83. W. Müller, Manifolds with Cusps of Rank One, Springer Lecture Notes 1244, Springer Verlag 1987.

    Google Scholar 

  84. E. Nelson, Analytic vectors, Annals of Math. 70 (1959), 572–615.

    Google Scholar 

  85. E. Picard, Sur un groupe de transformations des points de l’espace situés du même coté d’un plan, Bull. Soc. Math. France 12 (1884), 43–47.

    Google Scholar 

  86. W. Roelcke, Uber die Wellengleichung bei Grenzkreisgruppen erster Art, Sitz. Ber. Heidelberger Ak. der Wiss., Math. Nat. Kl. 1956, 4 Abh.

    Google Scholar 

  87. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischer Ebene I, Math. Ann. 167 (1966), 292–337.

    Google Scholar 

  88. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolisches Ebene II, Math. Ann. 168 (1967), 261–324.

    Google Scholar 

  89. P. Sarnak, The arithmetic and geometry of some hyperbolic three manifolds, Acta Math. 151 (1983), 253–295.

    Google Scholar 

  90. P. Sarnak, Spectra of Hyperbolic Surfaces, Bull. Amer. Math. Soc. 40 (2003), no. 4, 441478.

    Google Scholar 

  91. A. Selberg, Harmonic Analysis and Discontinuous Groups in Weakly Symmetric Riemannian Spaces with Applications to Dirichlet Series, International Colloquium on Zeta Functions, J. Indian Math. Soc. (1956), 47–87.

    Google Scholar 

  92. A. Selberg, Discontinuous Groups and Harmonic Analysis, Proc. International Congress of Mathematicians, Stockholm (1962), 177–189.

    Google Scholar 

  93. A. Selberg, Harmonic analysis. Introduction to the Göttingen lecture notes, Collected Papers Vol. I, Springer, 1989.

    Google Scholar 

  94. J. Szmidt, The Selberg trace formula for the Picard group SL 2({ Z}[i]), Acta Arith. 42 (1983), 291–424.

    Google Scholar 

  95. J. Szmidt, The Selberg trace formula and imaginary quadratic fields, Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis #52, Mathematics, University of Göttingen, 1987.

    Google Scholar 

  96. T. Tamagawa, On Selberg’s trace formula, J. Faculty of Science, University of Tokyo, Sec. I, VIII, Part 2, 363–386.

    Google Scholar 

  97. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, Oxford, 1951.

    Google Scholar 

  98. A.B. Venkov, Expansion in automorphic eigenfunctions of the Laplace-Beltrami operator in classical symmetric spaces of rank one, and the Selberg trace formula. Proc. Steklov Inst. Math. 125 (1973), 1–48.

    Google Scholar 

  99. G. Warner, Selberg’s trace formula for non-uniform lattices: The R-rank one case, Advance in Math. Studies 6 (1979), 1–142.

    Google Scholar 

  100. K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reellen Veränderlichen, Sitzungsbericht Königl. Akad. Wiss., 2 and 30 July 1885, 633–639 and 789–805.

    Google Scholar 

  101. E. Yoshida, On an Application of Zagier’s Method in the Theory of Selberg’s Trace Formula, Advanced Studies in Pure Mathematics 13 (1988), Investigations in Number Theory, 193–214.

    Google Scholar 

  102. D. Zagier, Eisenstein series and the Selberg trace formula, in Automorphic Forms, representation theory and arithmetic, Tata Institute, Bombay (1979), 303–355.

    Google Scholar 

  103. D. Zagier, The Rankin-Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci. Univ. Tokyo I A 28 (1981), 415–437.

    Google Scholar 

  104. P. Zograf, Selberg trace formula for the Hilbert modular group of a real quadratic number field, J. Soviet Math. 19 (1982), 1637–1652.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jorgenson, J., Lang, S. (2012). The heat kernel, theta inversion and zetas on Г∖GK . In: Goldfeld, D., Jorgenson, J., Jones, P., Ramakrishnan, D., Ribet, K., Tate, J. (eds) Number Theory, Analysis and Geometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-1260-1_13

Download citation

Publish with us

Policies and ethics