Skip to main content

Phase II Enzymes

  • Chapter
  • First Online:
Activation and Detoxification Enzymes

Abstract

Functionalization reaction catalyzed by a phase I enzyme incorporates a functional group to a foreign compound, resulting in the formation of an intermediate metabolite. Many intermediates contain highly reactive chemical groups, which have the potential to react with cellular components (proteins, lipids, and DNA). The continuous presence of chemically active intermediates can lead to adverse health effects and various disease conditions. In detoxification process, intermediate metabolites undergo phase II metabolism to form highly hydrophilic and less reactive compounds, facilitating their excretion from the body through urine or bile. A foreign compound that already possesses a functional group can bypass phase I metabolism and directly take part in phase II metabolism before being eliminated from the body. Unlike phase I enzymes serving for activation metabolism, phase II enzymes deactivate and detoxify foreign compounds and are referred to as detoxification enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arand M, Cronin A, Adamska M, Oesch F (2005) Epoxide hydrolases: structure, function, mechanism, and assay. Methods Enzymol 400:569–588

    Article  PubMed  CAS  Google Scholar 

  • Benson AM, Hunkeler MJ, Talalay P (1980) Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Nat Acad Sci USA 177:5216–5220

    Article  Google Scholar 

  • Decker M, Arand M, Cronin A (2009) Mammalian epoxide hydrolases in xenobiotic metabolism and signalling. Arch Toxicol 83:297–318

    Article  PubMed  CAS  Google Scholar 

  • Dekant W, Vamvakas S (1993) Glutathione-dependent bioactivation of xenobiotics. Xenobiotica 23:873–887

    Article  PubMed  CAS  Google Scholar 

  • Evans D (1992) N-acetyltransferase. In: Kalow W (ed) Pharmacogenetics of drug metabolism. Pergamon, New York

    Google Scholar 

  • Fretland AJ, Omiecinski CJ (2000) Epoxide hydrolases: biochemistry and molecular biology. Chem Biol Interact 129:41–59

    Article  PubMed  CAS  Google Scholar 

  • Gamage N, Barnett A, Hempel N et al (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  PubMed  CAS  Google Scholar 

  • Grant DM, Blum M, Meyer UA (1992) Polymorphisms of N-acetyltransferase genes. Xenobiotica 9–10:1073–1081

    Article  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  • Kato R, Yamazoe Y (1994) Metabolic activation of N-hydroxylated metabolites of carcinogenic and mutagenic arylamines and arylamides by esterification. Drug Metab Rev 26:413–429

    Article  PubMed  CAS  Google Scholar 

  • King C, Rios G, Green M, Tephly T (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1:143–161

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Boles JW (1997) Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11:404–418

    PubMed  CAS  Google Scholar 

  • Mannervik B, Danielson UH (1988) Glutathione transferases – structure and catalytic activity. CRC Crit Rev Biochem 23:283–337

    Article  PubMed  CAS  Google Scholar 

  • Meech R, Mackenzie PI (1997) Structure and function of uridine diphosphate glucuronosyltransferases. Clin Exp Pharmacol Physiol 24:907–915

    Article  PubMed  CAS  Google Scholar 

  • Miners JO, Knights KM, Houston JB et al (2006) In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: pitfalls and promises. Biochem Pharmacol 71:1531–1539

    Article  PubMed  CAS  Google Scholar 

  • Negishi M, Pedersen LG, Petrotchenko E et al (2001) Structure and function of sulfotransferases. Arch Biochem Biophys 390:149–157

    Article  PubMed  CAS  Google Scholar 

  • Rao PV, Krishna CM, Zigler JS Jr (1992) Identification and characterization of the enzymatic activity of zeta-crystallin from guinea pig lens. A novel NADPH:quinone oxidoreductase. J Biol Chem 267:96–102

    PubMed  CAS  Google Scholar 

  • Talalay P (2000) Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12:5–11

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catechol O-methyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Toxicol 39:19–52

    Article  PubMed  CAS  Google Scholar 

  • Wilce MC, Parker MW (1994) Structure and function of glutathione S-transferases. Biochim Biophys Acta 1205(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Wildfang E, Zakharyan RA, Aposhian HV (1998) Enzymatic methylation of arsenic compounds. VI. Characterization of hamster liver arsenite and methylarsonic acid methyltransferase activities in vitro. Toxicol Appl Pharmacol 152:366–375

    Article  PubMed  CAS  Google Scholar 

  • Wood TC, Salavagionne OE, Mukherjee B et al (2006) Human arsenic methyltransferase (AS3MT) pharmacogenetics: gene resequencing and functional genomics studies. J Biol Chem 281:7364–7373

    Article  PubMed  CAS  Google Scholar 

  • Zakharyan RA, Wildfang E, Aposhian HV (1996) Enzymatic methylation of arsenic compounds. Toxicol Appl Pharmacol 140:77–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Hwei Chen Ph.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, CH. (2012). Phase II Enzymes. In: Activation and Detoxification Enzymes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1049-2_5

Download citation

Publish with us

Policies and ethics