Skip to main content

Caveolin-1 and Pancreatic Ductal Adenocarcinoma

  • Chapter
  • First Online:
Caveolins in Cancer Pathogenesis, Prevention and Therapy

Abstract

Pancreatic ductal adenocarcinoma (PDA) is a devastating disease because the annual incidence nearly equals the annual mortality. Landmark studies have identified the key genetic alterations that play a role in PDA tumorigenesis. However, recent work has underscored the importance of the pancreatic tumor microenvironment and other proteins that may be alternatively regulated in PDA cells. Caveolin (Cav-1), an integral membrane protein that plays a role in endo and exocytosis and intracellular signal transduction, is an example of a protein that appears to play a central role in PDA tumorigenesis. Cav-1 has been shown to have both oncogenic and tumor suppressor properties in lung and prostate cancers depending on the experimental setting. PDA models have demonstrated similar roles for Cav-1. For example, Cav-1 contributes to anchorage independent cell survival by its interaction with a cell surface protein, carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), which leads to PDA tumor growth and aggressiveness through the regulation of matrix metalloproteinases (MMPs). Conversely, Cav-1 can inhibit PDA tumor growth and development by regulating the EGFR-mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, Cav-1 suppresses progression of PDA by inhibiting Rho GTPases which are small monomeric molecules that are typically involved in actin cytoskeleton rearrangement during cellular migration. Clinically, Cav-1 expression, as a biomarker, correlates with patient survival, pathologic features, and fatty acid synthase (FASN) expression. Ongoing studies will elucidate the intricate way in which Cav-1 facilitates the pancreatic tumorigenesis process (including its role in the reverse Warburg effect in the PDA environment) as well as treatment interventions (radioresistance) for this devastating disease. These studies will aid us in better understanding the meaning of Cav-1 expression levels in pancreatic tumor cells and its microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  PubMed  CAS  Google Scholar 

  2. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  3. National Cancer Institute (2011) Pancreatic Cancer. http://www.cancer.gov/cancertopics/types/pancreatic

  4. Smit VT, Boot AJ, Smits AM, Fleuren GJ, Cornelisse CJ, Bos JL (1988) KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res 16:7773–7782

    Article  PubMed  CAS  Google Scholar 

  5. Sohn TA, Su GH, Ryu B, Yeo CJ, Kern SE (2001) High-throughput drug screening of the DPC4 tumor-suppressor pathway in human pancreatic cancer cells. Ann Surg 233:696–703

    Article  PubMed  CAS  Google Scholar 

  6. Barton CM, Staddon SL, Hughes CM, Hall PA, O’Sullivan C, Kloppel G, Theis B, Russell RC, Neoptolemos J, Williamson RC et al (1991) Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer 64:1076–1082

    Article  PubMed  CAS  Google Scholar 

  7. Liu J, Wang XB, Park DS, Lisanti MP (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277:10661–10668

    Article  PubMed  CAS  Google Scholar 

  8. Williams TM, Cheung MW, Park DS, Razani B, Cohen AW, Muller WJ, Di Vizio D, Chopra NG, Pestell RG, Lisanti MP (2003) Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 14:1027–1042

    Article  PubMed  CAS  Google Scholar 

  9. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272:30429–30438

    Article  PubMed  CAS  Google Scholar 

  10. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9:1960–1971

    Article  PubMed  CAS  Google Scholar 

  11. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897

    Article  PubMed  CAS  Google Scholar 

  12. Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878

    PubMed  CAS  Google Scholar 

  13. Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K, Zhumabayeva B, Siebert PD, Dietel M, Schafer R, Sers C (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159:1635–1643

    Article  PubMed  CAS  Google Scholar 

  14. Sunaga N, Miyajima K, Suzuki M, Sato M, White MA, Ramirez RD, Shay JW, Gazdar AF, Minna JD (2004) Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Cancer Res 64:4277–4285

    Article  PubMed  CAS  Google Scholar 

  15. Engelman JA, Zhang XL, Lisanti MP (1998) Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436:403–410

    Article  PubMed  CAS  Google Scholar 

  16. Yang G, Truong LD, Wheeler TM, Thompson TC (1999) Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59:5719–5723

    PubMed  CAS  Google Scholar 

  17. Han SE, Park KH, Lee G, Huh YJ, Min BM (2004) Mutation and aberrant expression of Caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. Int J Oncol 24:435–440

    PubMed  CAS  Google Scholar 

  18. Duxbury MS, Ito H, Ashley SW, Whang EE (2004) CEACAM6 cross-linking induces caveolin-1-dependent, Src-mediated focal adhesion kinase phosphorylation in BxPC3 pancreatic adenocarcinoma cells. J Biol Chem 279:23176–23182

    Article  PubMed  CAS  Google Scholar 

  19. Li L, Ren CH, Tahir SA, Ren C, Thompson TC (2003) Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23:9389–9404

    Article  PubMed  CAS  Google Scholar 

  20. Li. L, Ren CH, Tahir SA, RenC, Thompson TC (2003) Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol 23(24):9389–9404

    PubMed  Google Scholar 

  21. Yang G, Park S, Cao G, Goltsov A, Ren C, Truong LD, Demavo F, Thompson TC (2010) MMTV promoter-regulated caveolin-1 overexpression yields defective parenchymal epithelia in multiple exocrine organs of transgenic mice. Exp Mol Pathol 89(1):9–19

    Article  PubMed  CAS  Google Scholar 

  22. Kuniyasu H, Ellis LM, Evans DB, Abbruzzese JL, Fenoglio CJ, Bucana CD, Cleary KR, Tahara E, Fidler IJ (1999) Relative expression of E-cadherin and type IV collagenase genes predicts disease outcome in patients with resectable pancreatic carcinoma. Clin Cancer Res 5:25–33

    PubMed  CAS  Google Scholar 

  23. Haq M, Shafii A, Zervos EE, Rosemurgy AS (2000) Addition of matrix metalloproteinase inhibition to conventional cytotoxic therapy reduces tumor implantation and prolongs survival in a murine model of human pancreatic cancer. Cancer Res 60:3207–3211

    PubMed  CAS  Google Scholar 

  24. Jimenez RE, Hartwig W, Antoniu BA, Compton CC, Warshaw AL (2000) Fernandez-Del Castillo C. Effect of matrix metalloproteinase inhibition on pancreatic cancer invasion and metastasis: an additive strategy for cancer control. Ann Surg 231:644–654

    Article  PubMed  CAS  Google Scholar 

  25. Zervos EE, Shafii AE, Rosemurgy AS (1999) Matrix metalloproteinase (MMP) inhibition selectively decreases type II MMP activity in a murine model of pancreatic cancer. J Surg Res 81:65–68

    Article  PubMed  CAS  Google Scholar 

  26. Bramhall SR (1997) The matrix metalloproteinases and their inhibitors in pancreatic cancer. From molecular science to a clinical application. Int J Pancreatol 21:1–12

    PubMed  CAS  Google Scholar 

  27. Koshiba T, Hosotani R, Wada M, Miyamoto Y, Fujimoto K, Lee JU, Doi R, Arii S, Imamura M (1998) Involvement of matrix metalloproteinase-2 activity in invasion and metastasis of pancreatic carcinoma. Cancer 82:642–650

    Article  PubMed  CAS  Google Scholar 

  28. Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279:51630–51646

    Article  PubMed  CAS  Google Scholar 

  29. Han F, Zhu HG (2010) Caveolin-1 regulating the invasion and expression of matrix metalloproteinase (MMPs) in pancreatic carcinoma cells. J Surg Res 159:443–450

    Article  PubMed  CAS  Google Scholar 

  30. Han F, Gu D, Chen Q, Zhu H (2009) Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas 38:766–774

    Article  PubMed  CAS  Google Scholar 

  31. Raftopoulou M, Hall A (2004) Cell migration:Rho GTPases lead the way. Dev Biol 265:23–32

    Article  PubMed  CAS  Google Scholar 

  32. Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL (2005) Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 4:21

    Article  PubMed  Google Scholar 

  33. Suzuoki M, Miyamoto M, Kato K, Hiraoka K, Oshikiri T, Nakakubo Y, Fukunaga A, Shichinohe T, Shinohara T, Itoh T, Kondo S, Katoh H (2002) Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 87:1140–1144

    Article  PubMed  CAS  Google Scholar 

  34. Tanase CP, Dima S, Mihai M, Raducan E, Nicolescu MI, Albulescu L, Voiculescu B, Dumitrascu T, Cruceru LM, Leabu M, Popescu I, Hinescu ME (2009) Caveolin-1 overexpression correlates with tumour progression markers in pancreatic ductal adenocarcinoma. J Mol Histol 40:23–29

    Article  PubMed  CAS  Google Scholar 

  35. Witkiewicz AK, Nguyen KH, Dasgupta A, Kennedy EP, Yeo CJ, Lisanti MP, Brody JR (2008) Co-expression of fatty acid synthase and caveolin-1 in pancreatic ductal adenocarcinoma: implications for tumor progression and clinical outcome. Cell Cycle 7:3021–3025

    Article  PubMed  CAS  Google Scholar 

  36. Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530

    Article  PubMed  CAS  Google Scholar 

  37. Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66:5977–5980

    Article  PubMed  CAS  Google Scholar 

  38. Di Vizio D, Sotgia F, Williams TM, Hassan GS, Capozza F, Frank PG, Pestell RG, Loda M, Freeman MR, Lisanti MP (2007) Caveolin-1 is required for the upregulation of fatty acid synthase (FASN), a tumor promoter, during prostate cancer progression. Cancer Biol Ther 6:1263–1268

    PubMed  Google Scholar 

  39. Cordes N, Frick S, Brunner TB, Pilarsky C, Grutzmann R, Sipos B, Kloppel G, McKenna WG, Bernhard EJ (2007) Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene 26:6851–6862

    Article  PubMed  CAS  Google Scholar 

  40. Hehlgans S, Eke I, Storch K, Haase M, Baretton GB, Cordes N (2009) Caveolin-1 mediated radioresistance of 3D grown pancreatic cancer cells. Radiother Oncol 92:362–370

    Article  PubMed  CAS  Google Scholar 

  41. Showalter SL, Huang YH, Witkiewicz A, Costantino CL, Yeo CJ, Green JJ, Langer R, Anderson DG, Sawicki JA, Brody JR (2008) Nanoparticulate delivery of diphtheria toxin DNA effectively kills Mesothelin expressing pancreatic cancer cells. Cancer Biol Ther 7:1584–1590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Brody .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rittenhouse, D.W., Mukherjee, O., Richards, N.G., Yeo, C.J., Witkiewicz, A.K., Brody, J.R. (2012). Caveolin-1 and Pancreatic Ductal Adenocarcinoma. In: Mercier, I., Jasmin, JF., Lisanti, M. (eds) Caveolins in Cancer Pathogenesis, Prevention and Therapy. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1001-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1001-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1000-3

  • Online ISBN: 978-1-4614-1001-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics