Skip to main content

The Role of the X-linked Retinitis Pigmentosa Protein RP2 in Vesicle Traffic and Cilia Function

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 723))

Abstract

Primary cilia play a vital role as mechano- and environmental sensors. The photoreceptor outer segment is a highly modified and specialised sensory cilium that detects light. Diseases that affect cilia function (ciliopathies) have been identified as the underlying etiology of numerous genetic disorders such as renal cystic diseases and retinal degeneration. Many of the genes that cause ciliopathies encode functional or structural components of primary cilia or basal bodies. Recent evidence shows that the retinitis pigmentosa (RP) protein RP2 and the small GTPase Arl3 play important roles in cilia function by facilitating transport and docking of vesicles carrying proteins destined for the primary cilium. RP2 localises to the periciliary ridge, the basal body and Golgi complex of photoreceptors, as well as the primary cilium of renal cells. Two newly identified RP2 interaction partners, N-ethylmaleimide sensitive factor and polycystin 2 further support a role for RP2 in vesicle transport and cilia function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartolini F, Bhamidipati A, Thomas S et al (2002) Functional overlap between Retinitis Pigmentosa 2 protein and the tubulin-specific chaperone cofactor C. J Biol Chem 277:14629–14634

    Article  PubMed  CAS  Google Scholar 

  • Chapple JP, Hardcastle AJ, Grayson C et al (2000) Mutations in the N-terminus of the X-linked retinitis pigmentosa protein RP2 interfere with the normal targeting of the protein to the plasma membrane. Hum Mol Genet 9:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • Chapple JP, Hardcastle AJ, Grayson C et al (2002) Delineation of the plasma membrane targeting domain of the X-linked retinitis pigmentosa protein RP2. Invest Ophthalmol Vis Sci 43:2015–2020

    PubMed  Google Scholar 

  • Chapple JP, Grayson C, Hardcastle AJ et al (2003) Organization on the plasma membrane of the retinitis pigmentosa protein RP2: investigation of association with detergent-resistant membranes and polarized sorting. Biochem J 372:427–433

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves J, Nolasco S, Nascimento R et al (2010) TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO 11:194–200

    Article  Google Scholar 

  • Evans RJ, Hardcastle AJ, Cheetham ME (2006) Focus on molecules: X-linked Retinitis Pigmentosa 2 protein, RP2. Exp Eye Res 82:543–544

    Article  PubMed  Google Scholar 

  • Evans RJ, Schwarz N, Nagel-Wolfrum K et al (2010) The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium. Hum Mol Genet 19:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Feldman JL, Marshall WF (2009) ASQ2 encodes a TBCC-like protein required for mother-daughter centriole linkage and mitotic spindle orientation. Curr Biol 19:1238–1243

    Article  PubMed  CAS  Google Scholar 

  • Grayson C, Bartolini F, Chapple JP et al (2002) Localization in the human retina of the X-linked retinitis pigmentosa protein RP2, its homologue cofactor C and the RP2 interacting protein Arl3. Hum Mol Genet 11:3065–3074

    Article  PubMed  CAS  Google Scholar 

  • Hardcastle AJ, Thiselton DJ, van Maldergem L et al (1999) Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet 64:1210–1215

    Article  PubMed  CAS  Google Scholar 

  • Harris PC, Torres VE (2009) Polycystic Kidney Disease. Ann Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JM, Cheng CL, Molday LL et al (2010) Interaction and localization of the retinitis pigmentosa protein RP2 and NSF in retinal photoreceptor cells. Biochem 49:7439–7447

    Article  CAS  Google Scholar 

  • Hurd T, Zhou W, Jenkins P et al (2010) The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development. Hum Mol Genet 19:4330–4344

    Google Scholar 

  • Kuhnel K, Veltel S, Schlichting I et al (2006) Crystal structure of the human retinitis pigmentosa 2 protein and its interaction with Arl3. Structure 14:367–378

    Article  PubMed  Google Scholar 

  • Mayer A, Wickner W, Haas A (1996) Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85:83–94

    Article  PubMed  CAS  Google Scholar 

  • Schrick JJ, Vogel P, Abuin A et al (2006) ADP-ribosylation factor-like 3 is involved in kidney and photoreceptor development. Am J Pathol 168:1288–1298

    Article  PubMed  CAS  Google Scholar 

  • Schwahn U, Lenzer S, Dong J et al (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    Article  PubMed  CAS  Google Scholar 

  • Schwahn U, Paland N, Techritz S et al (2001) Mutations in the X-linked RP2 gene cause intracellular misrouting and loss of the protein. Hum Mol Genet 10:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Shah AS, Farmen SL, Moninger TO et al (2008) Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia. Proc Nat Ac Sci 105:3380–3385

    Article  CAS  Google Scholar 

  • Söllner T, Bennet MK, Whiteheart SW et al (1993) A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–418

    Article  PubMed  Google Scholar 

  • Stephan A, Vaughan S, Shaw MK et al (2007) An essential quality control mechanism at the eukaryotic basal body prior to intraflagellar transport. Traffic 8:1323–1330

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Huang Y, Rommelaere H et al (1996) Pathway leading to correctly folded β-tubulin. Cell 86:287–296

    Article  PubMed  CAS  Google Scholar 

  • Veltel S, Gasper R, Eisenacher E et al (2008) The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3. Nat Struct Mol Biol 15:373–380

    Article  PubMed  CAS  Google Scholar 

  • Veltel S, Wittinghofer A (2009) RPGR and RP2: targets for the treatment of X-linked retinitis pigmentosa? Expert Opin Ther Targets 13:1239–1251

    Article  PubMed  CAS  Google Scholar 

  • Yoon JH, Qiu J, Cai S et al (2006) The retinitis pigmentosa-mutated RP2 protein exhibits exonuclease activity and translocates to the nucleus in response to DNA damage. Exp Cell Res 312:1323–1334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the British Retinitis Pigmentosa Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Cheetham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Schwarz, N., Hardcastle, A.J., Cheetham, M.E. (2012). The Role of the X-linked Retinitis Pigmentosa Protein RP2 in Vesicle Traffic and Cilia Function. In: LaVail, M., Ash, J., Anderson, R., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 723. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0631-0_66

Download citation

Publish with us

Policies and ethics