Skip to main content

Formation of Epitaxial Graphene

  • Chapter
  • First Online:
Graphene Nanoelectronics

Abstract

This chapter starts off with a discussion on the history of graphite growth on SiC. It then gives an overview of various methods to grow epitaxial graphene on SiC; methods discussed include growth on various polytypes, at different vacuum levels and gas flows, and on both the Si- and C-face of SiC. Structural and electronic properties of these films are looked into along with carrier mobility results from Hall-bar and FET-structures where available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Production of artificial crystalline carbonaceous E. Acheson and United States Patent No. 492.767 (28.02.1893).

    Google Scholar 

  2. Edward Acheson – Carborundum The Lemelson – MIT Program, electronic source (http://web.mit.edu/invent/,andiow/acheson.html).

  3. A. J. Vanbommel, J. E. Crombeen, and A. Vantooren, “LEED and Auger-electron observations of SiC (0001) surface,” Surface Science 48 (2), 463–472 (1975).

    Article  Google Scholar 

  4. I. Forbeaux, J. M. Themlin, and J. M. Debever, “Heteroepitaxial graphite on 6H-SiC(0001): Interface formation through conduction-band electronic structure,” Physical Review B 58 (24), 16396–16406 (1998).

    Article  Google Scholar 

  5. A. Charrier, A. Coati, T. Argunova et al., “Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films,” Journal of Applied Physics 92 (5), 2479–2484 (2002).

    Article  Google Scholar 

  6. K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field effect in atomically thin carbon films,” Science 306 (5696), 666–669 (2004).

    Article  Google Scholar 

  7. C. Berger, Z. M. Song, T. B. Li et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B 108 (52), 19912–19916 (2004).

    Article  Google Scholar 

  8. Y. B. Zhang, Y. W. Tan, H. L. Stormer et al., “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438 (7065), 201–204 (2005).

    Article  Google Scholar 

  9. J. Hass, R. Feng, T. Li et al., “Highly ordered graphene for two dimensional electronics,” Applied Physics Letters 89 (14), 143106 (2006).

    Google Scholar 

  10. Y. Q. Wu, P. D. Ye, M. A. Capano et al., “Top-gated graphene field-effect-transistors formed by decomposition of SiC,” Applied Physics Letters 92 (9), 092102 (2008).

    Google Scholar 

  11. private communication G. Jernigan and P. Campbell, Nov 30, 2007.

    Google Scholar 

  12. K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials 8 (3), 203–207 (2009).

    Article  Google Scholar 

  13. private communication D. K. Gaskill and J. L.Tedesco, Sept, 2008.

    Google Scholar 

  14. D. K. Gaskill, G. G. Jernigan, P. M. Campbell et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 117–124.

    Google Scholar 

  15. private communication D. K. Gaskill and J. L. Tedesco, Dec 4, 2008.

    Google Scholar 

  16. private communication D. K. Gaskill and J. L. Tedesco, Dec 17, 2009.

    Google Scholar 

  17. Cree press release, Aug. 30, 2010, www.cree.com.

  18. J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics-Condensed Matter 20 (32), 323202 (2008).

    Google Scholar 

  19. T. Seyller, A. Bostwick, K. V. Emtsev et al., “Epitaxial graphene: a new material,” Physica Status Solidi B-Basic Solid State Physics 245 (7), 1436–1446 (2008).

    Article  Google Scholar 

  20. W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene electronic structure and transport,” Journal of Physics D-Applied Physics 43 (37), 374007 (2010).

    Google Scholar 

  21. R. F. Davis, “Proceedings of the international conference in SiC and related materials – 93,” Institute of Physics Conference Series 137, 1 (1994).

    Google Scholar 

  22. A. Taylor, Jones, R. M. in Silicon Carbide - A High Temperature Semiconductor, Eds. O’Connor, J. R., Smiltens, J., Pergamon Press, Oxford, London, New York, Paris 1960, 14.

    Google Scholar 

  23. A. Bauer, J. Krausslich, L. Dressler et al., “High-precision determination of atomic positions in crystals: The case of 6H- and 4H-SiC,” Physical Review B 57 (5), 2647–2650 (1998).

    Article  Google Scholar 

  24. F. R. Chien, S. R. Nutt, and W. S. Yoo, “Lattice mismatch measurement of epitaxial beta-SiC on alpha-SiC substrates,” Journal of Applied Physics 77 (7), 3138–3145 (1995).

    Article  Google Scholar 

  25. Y. Baskin and L. Meyer, “Lattice constants of graphite at low temperatures,” Physical Review 100 (2), 544–544 (1955).

    Article  Google Scholar 

  26. ed. Gary L. Harris “Properties of Silicon Carbide”, INSPEC, the Institution of Electrical Engineers, London 1995.

    Google Scholar 

  27. A. Powell “Growth of SiC Substrates”, J. Jenny, S. Muller, H. Mcd. Hobgood, V. Tsvetkov, R. Lenoard, and C. Carter, Jr., in “SiC Materials and Devices, vol. 2”, ed. Michael Shur, Sergey Rumyantsev, and Michael Levinshtein, World Scientific, Singapore (2007).

    Google Scholar 

  28. P. G. Neudeck, W. Huang, and M. Dudley, “Breakdown degradation associated with elementary screw dislocations in 4H-SiC p(+)n junction rectifiers,” Solid-State Electronics 42 (12), 2157–2164 (1998).

    Article  Google Scholar 

  29. C. R. Eddy and D. K. Gaskill, “Silicon Carbide as a Platform for Power Electronics,” Science 324 (5933), 1398–1400 (2009).

    Article  Google Scholar 

  30. K. K. Lew, B. L. VanMil, R. L. Myers-Ward et al., in Silicon Carbide and Related Materials 2006, edited by N. Wright, C. M. Johnson, K. Vassilevski et al. Materials Science Forum (2007), Vol. 556–557, pp. 513–516.

    Google Scholar 

  31. B. L. VanMil, K. K. Lew, R. L. Myers-Ward et al., “Etch rates near hot-wall CVD growth temperature for Si-face 4H-SiC using H-2 and C3H8,” Journal of Crystal Growth 311 (2), 238–243 (2009).

    Article  Google Scholar 

  32. B. L. VanMil, R. L. Myers-Ward, J. L. Tedesco et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. Materials Science Forum (2009), Vol. 615–617, pp. 211–214.

    Google Scholar 

  33. A. Mattausch and O. Pankratov, “Ab initio study of graphene on SiC,” Physical Review Letters 99 (7), 076802 (2007).

    Google Scholar 

  34. F. Varchon, R. Feng, J. Hass et al., “Electronic structure of epitaxial graphene layers on SiC: Effect of the substrate,” Physical Review Letters 99 (12), 126805 (2007).

    Google Scholar 

  35. L. Magaud, F. Hiebel, F. Varchon et al., “Graphene on the C-terminated SiC (0001) surface: An ab initio study,” Physical Review B 79 (16) (2009).

    Google Scholar 

  36. Shu Xu Thushari Jayasekera, K.W. Kim, and M.Buongiorno Nardelli, “Electronic properties of the Graphene/6H-SiC(000–1) interface: a first principles study,” Physical Review B 84, 035442 (2011).

    Google Scholar 

  37. A. J. Van Bommel, J. E. Crombeen, and A. Van Tooren, “LEED and Auger-Electron Observations of SiC (0001) Surface,” Surface Science 48, 463–472 (1975).

    Google Scholar 

  38. X. S. Wu, Y. K. Hu, M. Ruan et al., “Half integer quantum Hall effect in high mobility single layer epitaxial graphene,” Applied Physics Letters 95 (22), 223108 (2009).

    Google Scholar 

  39. M. L. Sadowski, G. Martinez, M. Potemski et al., “Landau level spectroscopy of ultrathin graphite layers,” Physical Review Letters 97 (26), 266405 (2006).

    Google Scholar 

  40. private communication G. G. Jernigan, 2009.

    Google Scholar 

  41. S. K. Lilov, “Thermodynamic analysis of the gas-phase at the dissociative evaporation of silicon-carbide,” Crystal Research and Technology 28 (4), 503–510 (1993).

    Article  Google Scholar 

  42. T. Seyller, K. V. Emtsev, K. Gao et al., “Structural and electronic properties of graphite layers grown on SiC(0001),” Surface Science 600 (18), 3906–3911 (2006).

    Article  Google Scholar 

  43. W. A. de Heer, C. Berger, X. S. Wu et al., “Epitaxial graphene,” Solid State Communications 143 (1–2), 92–100 (2007).

    Article  Google Scholar 

  44. C. Riedl, U. Starke, J. Bernhardt et al., “Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces,” Physical Review B 76 (24), 245406 (2007).

    Google Scholar 

  45. G. Gu, S. Nie, R. M. Feenstra et al., “Field effect in epitaxial graphene on a silicon carbide substrate,” Applied Physics Letters 90 (25), 253507 (2007).

    Google Scholar 

  46. G. G. Jernigan, B. L. VanMil, J. L. Tedesco et al., “Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production,” Nano Letters 9 (7), 2605–2609 (2009).

    Article  Google Scholar 

  47. V. W. Brar, Y. Zhang, Y. Yayon et al., “Scanning tunneling spectroscopy of inhomogeneous electronic structure in monolayer and bilayer graphene on SiC,” Applied Physics Letters 91 (12), 122102 (2007).

    Google Scholar 

  48. P. Mallet, F. Varchon, C. Naud et al., “Electron states of mono- and bilayer graphene on SiC probed by scanning-tunneling microscopy,” Physical Review B 76 (4), 041403 (2007).

    Google Scholar 

  49. K. V. Emtsev, F. Speck, T. Seyller et al., “Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study,” Physical Review B 77 (15), 155303 (2008).

    Google Scholar 

  50. D. Graf, F. Molitor, K. Ensslin et al., “Raman imaging of graphene,” Solid State Communications 143 (1–2), 44–46 (2007).

    Article  Google Scholar 

  51. T. Ohta, A. Bostwick, J. L. McChesney et al., “Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy,” Physical Review Letters 98 (20), 206802 (2007).

    Google Scholar 

  52. A. Bostwick, T. Ohta, J. L. McChesney et al., “Symmetry breaking in few layer graphene films,” New Journal of Physics 9, 385 (2007).

    Google Scholar 

  53. J. Hass, J. E. Millan-Otoya, P. N. First et al., “Interface structure of epitaxial graphene grown on 4H-SiC(0001),” Physical Review B 78 (20), 205424 (2008).

    Google Scholar 

  54. G. M. Rutter, N. P. Guisinger, J. N. Crain et al., “Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy,” Physical Review B 76 (23), 235416 (2007).

    Google Scholar 

  55. E. Rollings, G. H. Gweon, S. Y. Zhou et al., “Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate,” Journal of Physics and Chemistry of Solids 67 (9–10), 2172–2177 (2006).

    Article  Google Scholar 

  56. J. Kedzierski, P. L. Hsu, P. Healey et al., “Epitaxial graphene transistors on SIC substrates,” IEEE Transactions on Electron Devices 55 (8), 2078–2085 (2008).

    Article  Google Scholar 

  57. M. Kusunoki, T. Suzuki, T. Hirayama et al., “A formation mechanism of carbon nanotube films on SiC(0001),” Applied Physics Letters 77 (4), 531–533 (2000).

    Article  Google Scholar 

  58. A. J. Strudwick G. L. Creeth, J. T. Sadowski, and C. H. Marrows, “Surface morphology and transport studies of epitaxial graphene on SiC(\( 000\bar{1} \)),” Physical Review B 43, 195440 (2010).

    Google Scholar 

  59. U. Starke, in Recent Major Advances in SiC, edited by H. Matsunami W. Choyke, and G. Pensl (Springer Scientific, 2003), p. 281.

    Google Scholar 

  60. W. Strupinski, R. Bozek, J. Borysiuk et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 199–202.

    Google Scholar 

  61. M. L. Bolen, S. E. Harrison, L. B. Biedermann et al., “Graphene formation mechanisms on 4H-SiC(0001),” Physical Review B 80 (11), 115433 (2009).

    Google Scholar 

  62. J. Borysiuk, R. Bozek, W. Strupinski et al., “Transmission electron microscopy and scanning tunneling microscopy investigations of graphene on 4H-SiC(0001),” Journal of Applied Physics 105 (2), 023503 (2009).

    Google Scholar 

  63. J. Borysiuk, W. Strupinski, R. Bozek et al., in Silicon Carbide and Related Materials 2008, edited by A. PerezTomas, P. Godignon, M. Vellvehi et al. (2009), Vol. 615–617, pp. 207–210.

    Google Scholar 

  64. W. Norimatsu and M. Kusunoki, “Transitional structures of the interface between graphene and 6H-SiC (0001),” Chemical Physics Letters 468 (1–3), 52–56 (2009).

    Article  Google Scholar 

  65. T. Shen, J. J. Gu, M. Xu et al., “Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001),” Applied Physics Letters 95 (17), 172105 (2009).

    Google Scholar 

  66. J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., “Hall effect mobility of epitaxial graphene grown on silicon carbide,” Applied Physics Letters 95 (12), 122102 (2009).

    Google Scholar 

  67. J. S. Moon, D. Curtis, M. Hu et al., “Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates,” IEEE Electron Device Letters 30 (6), 650–652 (2009).

    Article  Google Scholar 

  68. M. K. Yakes, D. Gunlycke, J. L. Tedesco et al., “Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interactions,” Nano Letters 10 (5), 1559–1562 (2010).

    Google Scholar 

  69. S. Shivaraman, M. V. S. Chandrashekhar, J. J. Boeckl et al., “Thickness Estimation of Epitaxial Graphene on SiC Using Attenuation of Substrate Raman Intensity,” Journal of Electronic Materials 38 (6), 725–730 (2009).

    Article  Google Scholar 

  70. L. B. Biedermann, M. L. Bolen, M. A. Capano et al., “Insights into few-layer epitaxial graphene growth on 4H-SiC(0001)over-bar substrates from STM studies,” Physical Review B 79 (12), 125411 (2009).

    Google Scholar 

  71. G. Prakash, M. A. Capano, M. L. Bolen et al., “AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(\( 000\bar{1} \)),” Carbon 48 (9), 2383–2393 (2010).

    Google Scholar 

  72. G. Prakash, M. L. Bolen, R. Colby et al., “Nanomanipulation of ridges in few-layer epitaxial graphene grown on the carbon face of 4H-SiC,” New Journal of Physics 12, 125009 (2010).

    Google Scholar 

  73. J. Hass, F. Varchon, J. E. Millan-Otoya et al., “Why multilayer graphene on 4H-SiC (\( 000\bar{1} \)) behaves like a single sheet of graphene,” Physical Review Letters 100 (12), 125504 (2010).

    Google Scholar 

  74. Luxmi, N. Srivastava, G. He et al., “Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces,” Physical Review B 82 (23), 235406 (2010).

    Google Scholar 

  75. D. L. Miller, K. D. Kubista, G. M. Rutter et al., “Observing the Quantization of Zero Mass Carriers in Graphene,” Science 324 (5929), 924–927 (2009).

    Article  Google Scholar 

  76. M. Sprinkle, D. Siegel, Y. Hu et al., “First Direct Observation of a Nearly Ideal Graphene Band Structure,” Physical Review Letters 103 (22), 226803 (2009).

    Google Scholar 

  77. J. Hass, R. Feng, J. E. Millan-Otoya et al., “Structural properties of the multilayer graphene/4H-SiC(\( 000\bar{1} \)) system as determined by surface x-ray diffraction,” Physical Review B 75 (21), 214109 (2010).

    Google Scholar 

  78. C. Berger, Z. M. Song, X. B. Li et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science 312 (5777), 1191–1196 (2006).

    Article  Google Scholar 

  79. J. H. Chen, C. Jang, S. D. Xiao et al., “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology 3 (4), 206–209 (2008).

    Article  Google Scholar 

  80. K. I. Bolotin, K. J. Sikes, Z. Jiang et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications 146 (9–10), 351–355 (2008).

    Article  Google Scholar 

  81. M. L. Sadowski, G. Martinez, M. Potemski et al., “Magnetospectroscopy of epitaxial few-layer graphene,” Solid State Communications 143 (1–2), 123–125 (2007).

    Article  Google Scholar 

  82. C. Berger, Z. M. Song, X. B. Li et al., “Magnetotransport in high mobility epitaxial graphene,” Physica Status Solidi a-Applications and Materials Science 204 (6), 1746–1750 (2007).

    Article  Google Scholar 

  83. D. Sun, C. Divin, C. Berger et al., “Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene,” Physical Review Letters 104 (13), 136802 (2010).

    Google Scholar 

  84. M. Orlita, C. Faugeras, P. Plochocka et al., “Approaching the Dirac Point in High-Mobility Multilayer Epitaxial Graphene,” Physical Review Letters 101 (26), 267101 (2008).

    Google Scholar 

  85. I. Langmuir, “Convection and conduction of heat in gases,” Physical Review 34 (6) (1912); G. R. Fonda, “Evaporation of tungsten under various pressures of argon,” Physical Review 31 (2), 260–266 (1928).

    Google Scholar 

  86. J. L. Tedesco, B. L. VanMil, R. L. Myers-Ward et al., in Graphene and Emerging Materials for Post-Cmos Applications, edited by Y. Obeng, S. DeGendt, P. Srinivasan et al. (2009), Vol. 19, pp. 137–150.

    Google Scholar 

  87. C. Virojanadara, M. Syvajarvi, R. Yakimova et al., “Homogeneous large-area graphene layer growth on 6H-SiC(0001),” Physical Review B 78 (24), 245403 (2008).

    Google Scholar 

  88. C. Virojanadara, R. Yakimova, J. R. Osiecki et al., “Substrate orientation: A way towards higher quality monolayer graphene growth on 6H-SiC(0001),” Surface Science 603 (15), L87–L90 (2009).

    Article  Google Scholar 

  89. J. Jobst, D. Waldmann, F. Speck et al., “Quantum oscillations and quantum Hall effect in epitaxial graphene,” Physical Review B 81 (19), 195434 (2010).

    Google Scholar 

  90. A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov et al., “Towards a quantum resistance standard based on epitaxial graphene,” Nature Nanotechnology 5 (3), 186–189 (2010).

    Google Scholar 

  91. W. Pan, S. W. Howell, A. J. Ross et al., “Observation of the integer quantum Hall effect in high quality, uniform wafer-scale epitaxial graphene films,” Applied Physics Letters 97 (25), 252101 (2010).

    Google Scholar 

  92. T. Filleter, K. V. Emtsev, T. Seyller et al., “Local work function measurements of epitaxial graphene,” Applied Physics Letters 13, 133117 (2008).

    Google Scholar 

  93. J. S. Moon, D. Curtis, S. Bui et al., “Top-Gated Epitaxial Graphene FETs on Si-Face SiC Wafers With a Peak Transconductance of 600 mS/mm,” IEEE Electron Device Letters 31 (4), 260–262 (2010).

    Google Scholar 

  94. Damon B. Farmer Yu-Ming Lin, Keith A. Jenkins, Joseph L. Tedesco, Rachael L. Myers-Ward, Charles R. Eddy, Jr., D. Kurt Gaskill, Yanquing Wu, Phaedon Avouris, and Christos Dimitrakopoulos, “Enhanced Performance in Epitaxial Graphene FETs with Optimized Channel Morphology,” Applied Physics Letters submitted (2011).

    Google Scholar 

  95. J. S. Moon, D. Curtis, D. Zehnder et al., “Low-Phase-Noise Graphene FETs in Ambipolar RF Applications,” IEEE Electron Device Letters 32 (3), 270–272 (2011).

    Google Scholar 

  96. J. L. Tedesco, G. G. Jernigan, J. C. Culbertson et al., “Morphology characterization of argon-mediated epitaxial graphene on C-face SiC,” Applied Physics Letters 96 (22), 222103 (2010).

    Google Scholar 

  97. J. K. Hite, M. E. Twigg, J. L. Tedesco et al., “Epitaxial Graphene Nucleation on C-Face Silicon Carbide,” Nano Letters 11 (3), 1190–1194 (2011).

    Google Scholar 

  98. J. Borysiuk, R. Bozek, K. Grodecki et al., “Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H-SiC,” Journal of Applied Physics 108 (1), 013518 (2010).

    Google Scholar 

  99. J. Borysiuk, J. Soltys, and J. Piechota, “Stacking sequence dependence of graphene layers on SiC (\( 000\bar{1} \))-Experimental and theoretical investigation,” Journal of Applied Physics 109 (9), 093523 (2011).

    Google Scholar 

  100. Y. M. Lin, C. Dimitrakopoulos, D. B. Farmer et al., “Multicarrier transport in epitaxial multilayer graphene,” Applied Physics Letters 97 (11), 112107 (2010).

    Google Scholar 

  101. M. Orlita, C. Faugeras, J. Borysiuk et al., “Magneto-optics of bilayer inclusions in multilayered epitaxial graphene on the carbon face of SiC,” Physical Review B 83 (12), 125302 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors thank Glenn Jernigan and Charles Eddy for a critical reading of the manuscript. We thank Rachael Myers-Ward, Ginger Wheeler, Jennifer Hite and Nelson Garces for useful discussions. LON is grateful for postdoctoral support from the ASEE. This work was supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kurt Gaskill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gaskill, D.K., Nyakiti, L.O. (2012). Formation of Epitaxial Graphene. In: Murali, R. (eds) Graphene Nanoelectronics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-0548-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0548-1_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-0547-4

  • Online ISBN: 978-1-4614-0548-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics