Skip to main content

Carbon Dioxide Effects on Nerve Cell Function

  • Conference paper
Carbon Dioxide and Metabolic Regulations

Abstract

In this paper we will examine the sensitivity of three distinct populations of nerve cells to CO2. The aims of the study are threefold: first, to separate specific effects of CO2 from pH effects; secondly, to determine the variety of nerve cell responses to CO2 and, if possible, make some generalizations about the effects of this agent; and finally, to understand the ionic mechanisms of this response. Unfortunately, this third goal has not to date at all been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliography

  • Arvanitaki, A. and Chalazonitis, N., “Slow waves and associated spiking in nerve cells of Aplysia.” Bull. Inst. Oceanogr. (Monaco), 1224:1–15 (1961).

    Google Scholar 

  • Barker, J. L. and Carpenter, D. O., “Thermo-sensitivity of neurons in the sensorimotor cortex of the cat.” Science, 169:597–98 (1970).

    CAS  Google Scholar 

  • Blankenship, J. E., Wachtel, H., and Kandel, E. R., “Ionic mechanisms of excitatory, inhibitory, and dual synaptic actions mediated by an identified interneuron in abdominal ganglion of Aplysia.” J. Neurophysiol., 34: 76–92 (1971).

    PubMed  CAS  Google Scholar 

  • Bradley, K, Schlapp, W., and Spaccarelli, G., “Effect of carbon dioxide on the spinal reflexes in decapitated cats.” J. Physiol. (London), 111:62P (1956).

    Google Scholar 

  • Brooks, C. M. and Eccles, J. C., “A study of the effects of anaesthesia and asphyxia on the monosynaptic pathway through the spinal cord.” J. Neurophysiol., 10:349–60 (1947).

    PubMed  CAS  Google Scholar 

  • Brown, A. M. and Berman, P. R., “Mechanism of excitation of Aplysia neurons by carbon dioxide.” J. Gen. Physiol., 56:543–58 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., Walker, J. L. Jr., and Sutton, R. B., “Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons.” Gen. Physiol., 56:559–82 (1970).

    Article  CAS  Google Scholar 

  • Carpenter, D. O., “Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons.” Gen. Physiol., 50:1469–84 (1967).

    Article  CAS  Google Scholar 

  • Carpenter, D. O., “Membrane potential produced directly by the Na+ pump in Aplysia neurons.” Comp. Biochem. Physiol., 35:371–85 (1970).

    Article  CAS  Google Scholar 

  • Carpenter, D. O. and Alving, B. O., “A contribution of an electrogenic Na+ pump to membrane potential inAplysia neurons.” J. Gen. Physiol., 52:1–21 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, D. O. and Henneman, E., “A relation between the threshold of stretch receptors in skeletal muscle and the diameter of their axons.” Neurophysiol., 29:353–68 (1966).

    CAS  Google Scholar 

  • Chalazonitis, N., “Chémopotentiels des neurones géants fonctionnellement differénciés.” Arch. Sci. Physiol., 13:41–78 (1959).

    CAS  Google Scholar 

  • Chalazonitis, N., “Effects of changes in Pco2 and Po2 on rhythmic potentials from giant neurons.” Ann. N.Y. Acad. Sci., 109:451–79 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Chalazonitis, N., “Chemopotentials in giant nerve cells (Aplysia fasciata).” In Florey, E., ed., Nervous Inhibition (Oxford, 1961), pp. 179–93.

    Google Scholar 

  • Cohen, M. I., “Discharge patterns of brain-stem respiratory neurons in relation to carbon dioxide tension.” J. Neurophysiol., 31:142–65 (1968).

    PubMed  CAS  Google Scholar 

  • Dundee, J. W., Black, G. W., and Nicholl, R. M., “Alterations in response to somatic pain associated with anesthesia.” Brit. Anesth., 34:24–30 (1962).

    Article  CAS  Google Scholar 

  • Eccles, J. C., Magni, F., and Willis, W. D., “Depolarization of central terminals of group 1 afferent fibers from muscle.” J. Physiol, CLondon), 160:62–93 (1962).

    CAS  Google Scholar 

  • Eisenman, J. S. and Edinger, H. M., “Neuronal thermosensitivity.” Science, 172:1360–61 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, J. S. and Jackson, D. C., “Thermal response patterns of septal and preoptic neurons in cats.” Exptl. Neurol., 19:33–45 (1967).

    Article  CAS  Google Scholar 

  • Esplin, D. W. and Rosenstein, R., “Analysis of spinal depressant actions of carbon dioxide and acetazolamine.” Arch. Int. Pharmacodyn., 143:498–513 (1963).

    CAS  Google Scholar 

  • Eyzaguirre, C. and Koyano, H., “Effects of hypoxia, hypercapnia and on the chemoreceptor activity of the carotid body in vitro.” J. Physiol. (London), 178:385–409 (1965).

    PubMed  CAS  Google Scholar 

  • Gellhorn, E., “On the physiological action of carbon dioxide on cortex and hypothalamus.” E. E. G. Clin. Neurophysiol., 5:401–13 (1953).

    Article  CAS  Google Scholar 

  • Gerschenfeld, H. M., “Chemical transmitters in invertebrate nervous systems.” Soc. Exper. Biol Sympos., 20:299–323 (1966).

    CAS  Google Scholar 

  • Gill, P. K. and Kuno, M., “Properties of phrenic motoneurones.” J. Physiol (London), 168: 258–73 (1963).

    CAS  Google Scholar 

  • Hubbard, J. H., Corrie, W. S., Thompson, H. K., and Marshall, W. H., “Beta adrenergic mechanisms influencing brain steady potential in cats and rhesus monkeys.” Internat. J. Neuros, 2:57–67 (1971).

    Article  CAS  Google Scholar 

  • Ivanov, Y. N., “Changes in electrical activity of different brain regions in cats and dogs exposed to carbon dioxide.” Fed. Proc., 22:T13–18 (1963).

    Google Scholar 

  • Jurna, I. and Soderberg, U., “The effect of carbon dioxide, anesthetics and strychnine on jaw reflexes.” Arch. Int. Pharmacodyn., 142:323–38 (1963).

    CAS  Google Scholar 

  • Kandel, E. R., Frazier, W. T., and Coggeshall, R. E., “Opposite synaptic actions mediated by different branches of an identifiable interneuron in Aplysia.” Science, 155:346–49 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, J., “Single presynaptic neurone mediates a two component post-synaptic inhibition.” Nature, 221:866–68 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R. D., “Some further observations on the sodium efflux in frog muscle.” J. Physiol(London), 178:305–25 (1965).

    PubMed  CAS  Google Scholar 

  • Kirstein, L., “Early effects of oxygen lack and carbon dioxide excess on spinal reflexes.” Acta Physiol Scand., 23:Suppl. 80 (1951).

    Google Scholar 

  • Krnjevic, K., Randic, M., and Siesjö, B. K., “Cortical CO2 tension and neuronal excitability.” Physiol (London), 176:105–22 (1965).

    CAS  Google Scholar 

  • Krnjevic, K. and Schwartz, S., “Some properties of unresponsive cells in the cerebral cortex.” Exptl Brain Res., 3:306–19 (1967).

    Article  CAS  Google Scholar 

  • Lorente de Nö, R., “Carbon dioxide and nerve function.” Studies of the Rockefeller Institute for Medical Research, 131:148–93 (1947).

    Google Scholar 

  • Mendell, L. M. and Wall, P. D., “Presynaptic hyperpolarization: A role for fine afferent fibres.” J. Physiol (London), 172:274–94 (1964).

    PubMed  CAS  Google Scholar 

  • Meves, H. and Völkner, K. G., “Die Wirkung von CO2 auf das Ruhemembranpotential und die elektrischen Konstanten der quergestrieften Muskelfaser.” Pflügers Arch., 265:457–76 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Poulsen, T. “Investigation into the anaesthetic properties of carbon dioxide.” Acta Pharmacol et toxicol., 8:30–46 (1952).

    Article  CAS  Google Scholar 

  • Rapoport, S. I. and Marshall, W. H., “Measurement of cortical in spreading cortical depression.” Am. J. Physiol, 206:1177–80 (1964).

    PubMed  CAS  Google Scholar 

  • Rudomin, P. and Dutton, H., “Effects of muscle and cutaneous afferent nerve volleys on excitability fluctuations of 1A terminals.” J. Neurophysiol, 32:158–69 (1969).

    PubMed  CAS  Google Scholar 

  • Takeuchi, A. and Takeuchi, N., “Electrical changes in pre- and postsynaptic axons of the giant synapse of Loligo. J. Gen. Physiol, 45:1181–93 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Wachtal, H. and Kandel, E. R., “Conversion of synaptic excitation to inhibition at a dual chemical synapse.” J. Neurophysiol, 34:56–68 (1971).

    Google Scholar 

  • Wall, P. D., “Excitability changes in afferent fiber terminations and their relation to slow potentials.” J. Physiol. (London), 142:1–21 (1958).

    PubMed  CAS  Google Scholar 

  • Williams, J. A., Withrow, C. D., and Woodbury, D. M., “Effects of CO2 on transmembrane potentials of rat liver and muscle in vivo” J. Physiol. (London), 215:539–55 (1971).

    PubMed  CAS  Google Scholar 

  • Woody, C. D., Marshall, W. H., Besson, J. M., Thompson, H. K., Aleonard, P., and Albe-Fessard, D., “Brain potential shift with respiratory acidosis in the cat and monkey.” Am. J. Physiol, 218:275–83 (1970).

    CAS  Google Scholar 

  • Woody, C. D., Thompson, H. K., and Marshall, W. H., “Changes in the steady potential of the brain related to respiratory acidosis and cerebral blood flow.” Trans. Am. Neurol. Assoc., 91:32–37 (1966).

    Google Scholar 

  • Washizu, Y., “Effect of CO2 and on the responses of spinal motoneurons.” Brain and Nerve, 12:757–66 (1960) (in Japanese).

    Google Scholar 

Bibliography

  • Orkand, R. K., Nicholls, J. G., and Kuffler, S. W., “Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia.” J. Neurophysiol., 29:788–806 (1966).

    PubMed  CAS  Google Scholar 

  • Speckmann, E. J. and Caspers, H., “Verschiebungen des corticalen bestandpotentials bei Veränderungen der ventilationsgrösse.” Pflügers Arch., 310:235–50 (1969a).

    Article  PubMed  CAS  Google Scholar 

  • —— “Inhibitorische CO2-wirkungen auf spinale zwischen-und motoneurone bei der ratte.” Pflügers Arch., 307:R119–20 (1969b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag New York Inc.

About this paper

Cite this paper

Carpenter, D.O., Hubbard, J.H., Humphrey, D.R., Thompson, H.K., Marshall, W.H. (1974). Carbon Dioxide Effects on Nerve Cell Function. In: Nahas, G., Schaefer, K.E. (eds) Carbon Dioxide and Metabolic Regulations. Topics In Environmental Physiology And Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-9831-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-9831-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9833-5

  • Online ISBN: 978-1-4612-9831-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics