Skip to main content

Dog and rat models of diabetic retinopathy

  • Chapter
Lessons from Animal Diabetes VI

Abstract

Diabetic retinopathy is a significant complication of Type 1 and Type 2 diabetes mellitus, being observed in most patients after 15 years of diabetes, and increasing the risk of blindness 25-fold above normal.1,2 The natural history of clinically demonstrable retinopathy has been carefully documented in patients, and important stages (formation of capillary micro aneurysms, excessive vascular permeability, vascular occlusion, proliferation of new vessels and fibrous tissue, and contraction of the fibrovascular proliferations) have been identified.3 The earliest stages of the retinopathy (before microaneurysms appear), however, are not apparent clinically, and can be studied in patients only by noninvasive means, such as fluorescein angiography, or by relying on eyes collected at autopsy or at surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein R, Klein BE, Moss SE et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 102:520–26, 1984.

    PubMed  CAS  Google Scholar 

  2. Klein R, Klein BE, Moss SE et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. II. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol 102:527–32, 1984.

    PubMed  CAS  Google Scholar 

  3. Davis MD. Diabetic retinopathy. A clinical overview. Diabetes Care 15:1844–74, 1992.

    Article  PubMed  CAS  Google Scholar 

  4. Yokote M. Retinal and renal microangiopathy in carp with spontaneous diabetes mellitus. In: Early Diabetes. Adv. Metab. Disord. (Suppl 2) Academic Press 1973:pp 299–304.

    Google Scholar 

  5. Kaczurowski M. Angiopathy of retinal vessels in diabetic mice. Arch Ophthalmol 84:316–20, 1970.

    PubMed  CAS  Google Scholar 

  6. Duhault J, Lebon F, Boulanger M. KK mice as a model of microangiopathic lesions in diabetes. In: 7th Europ. Conf. Microcirc. Karger, Aberdeen, pp 453–8, 1973.

    Google Scholar 

  7. Sima AAF, Garcia-Salinas R, Basu PK. The BB Wistar rat: An experimental model for the study of diabetic retinopathy. Metabolism 32(Suppl 1): 136–40, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Chakrabarti S, Sima AAF. Effect of aldose reductase inhibition and insulin treatment on retinal capillary basement membrane thickening in BB rats. Diabetes 38:1181–86, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Toussaint D. Contribution a 1’etude anatomique et clinique de la retinopathie diabetique chez l’homme et chez 1’animal. Pathol Europ 108–48, 1968.

    Google Scholar 

  10. Hausler HR, Sibay TM, Campbell J. Retinopathy in a dog following diabetes induced by growth hormone. Diabetes 13:122–6, 1964.

    PubMed  CAS  Google Scholar 

  11. Gepts W, Toussaint D. Spontaneous diabetes in dogs and cats. Diabetologia 3:249–64, 1967.

    Article  PubMed  CAS  Google Scholar 

  12. Sibay TM, Hausler HR. Eye findings in two spontaneously diabetic related dogs. Am J Ophthalmol 63:289–94, 1967.

    PubMed  CAS  Google Scholar 

  13. Laver N, Robison WG Jr, Hansen BC. Spontaneously diabetic monkeys as a model for diabetic retinopathy. ARVO Abstracts. Invest Ophthalmol Vis Sci 35 (Suppl): 1733, 1994.

    Google Scholar 

  14. Pätz A, Maumenee AE. Studies on diabetic retinopathy. I. Retinopathy in a dog with spontaneous diabetes mellitus. Am J Ophthalmol 532–41, 1962.

    Google Scholar 

  15. Engerman RE, Bloodworth JMB Jr. Experimental diabetic retinopathy. Invest Ophthalmol 3:466–7, 1964.

    Google Scholar 

  16. Engerman RL, Bloodworth JMB Jr. Experimental diabetic retinopathy in dogs. Arch Ophthalmol 73:205–10, 1965.

    PubMed  CAS  Google Scholar 

  17. Engerman RL, Finkelstein D, Aguirre G et al. Appropriate animal models for research on human diabetes mellitus and its complications. Ocular complications. Diabetes 31 (Suppl 1):82–8, 1982.

    PubMed  CAS  Google Scholar 

  18. Engerman RL. Pathogenesis of diabetic retinopathy. Diabetes 38:1203–6, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Ashton N. Arteriolar involvement in diabetic retinopathy. Br J Ophthalmol 37:282–92, 1953.

    Article  PubMed  CAS  Google Scholar 

  20. Gardiner TA, Stitt AW, Anderson HR, Archer DB. Selective loss of vascular smooth muscle cells in the retinal microcirculation of diabetic dogs. Br J Ophthalmol 78:54–60, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Engerman RL, Bloodworth JMB Jr, Nelson S. Relationship of microvascular disease in diabetes to metabolic control. Diabetes 26:760–9, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–86, 1993.

    Article  Google Scholar 

  23. Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes 31(Suppl):26A, 1982.

    Google Scholar 

  24. Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes 33:97–100, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Kador PF, Akagi Y, Terubayashi H et al. Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmolmol 106:1099–1102, 1988.

    CAS  Google Scholar 

  26. Kador PF, Akagi Y, Takahashi Y et al. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmolmol 108:1301–9, 1990.

    CAS  Google Scholar 

  27. Wallow IH, Engerman RL. Permeability and patency of retinal blood vessels in experimental diabetes. Invest Ophthalmolmol 16:447–61, 1977.

    CAS  Google Scholar 

  28. Kador PF, Takahashi Y, Wyman M, Ferris F III. Diabeteslike proliferative retinal changes in galactose-fed dogs. Arch Ophthalmolmol 113:352–54, 1995.

    CAS  Google Scholar 

  29. Robison WG Jr, Nagata M, Laver N et al. Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest Ophthalmol Vis Sci 30:2285–92, 1989.

    PubMed  Google Scholar 

  30. Kern TS, Engerman RL. Galactose-induced retinal lesions in rats and effects of aldose reductase inhibition. Diabetes 41(Suppl 1):20A, 1992.

    Google Scholar 

  31. Kern TS, Engerman RL. Comparison of retinal lesions in alloxan-diabetic rats and galactose-fed rats. Curr Eye Res 13:863–7, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Hammes H-P, Syed S, Uhlmann M et al. Aminoguanidine does not inhibit the initial phase of experimental diabetic retinopathy in rats. Diabetologia 38:269–73,1995.

    Article  PubMed  CAS  Google Scholar 

  33. Kern TS, Engerman RL. Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci 36:490–6, 1994.

    Google Scholar 

  34. Leuenberger P, Cameron D, Stauffacher W et al. Ocular lesions in rats rendered chronically diabetic with streptozotocin. Ophthalmol Res 2:189–204, 1971.

    Article  CAS  Google Scholar 

  35. Robison WG Jr, Tillis TN, Laver N, Kinoshita JH. Diabetes-related histopathologies of the rat retina prevented with an aldose reductase inhibitor. Exp Eye Res 50:355–66, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Schröder S, Palinski W, Schmid-Schonbein GW. Activated monocyte and granulocytes, capillay nonperfusion and neovascularization in diabetic retinopathy. Am J Pathol 139:81–100, 1991.

    PubMed  Google Scholar 

  37. Hammes H-P, Martin S, Federlin K et al. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci USA. 88:11555–58, 1991.

    Article  PubMed  CAS  Google Scholar 

  38. von Sallmann L, Grimes P. Histopathologic changes in the eyes and kidneys of rats with long term streptozotocin diabetes. In: Contemporary ophthalmology. Williams & Wilkins, Baltimore, MD, Bellows JG, ed pp 502–11, 1972.

    Google Scholar 

  39. Martin JM, Gregor WH, Lacy PE, Evans RG. The effect of hyperglycemia upon islet regeneration in rats. Diabetes 12:538–44, 1963.

    PubMed  CAS  Google Scholar 

  40. Rodriguez RR. Alloxan diabetes in the rat: Recovery following estrogen treatment. Endocrinology 55:1–9, 1954.

    Article  CAS  Google Scholar 

  41. Chakrabarti S, Sima AAF, Tze WJ, Tai J. Prevention of diabetic retinal capillary pericyte degeneration and loss by pancreatic islet allograft. Curr Eye Res 6:649–58, 1987.

    Article  PubMed  CAS  Google Scholar 

  42. Yanko L, Michaelson IC, Cohen AM. The retinopathy of sucrose-fed rats. Isr J Med Sci 8:1633–36, 1972.

    Google Scholar 

  43. Boot-Handford R, Heath H. Identification of fructose as the retinopathic agent associated with the ingestion of sucrose-rich diets in the rat. Metabolism 29:1247–52, 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Hammes H-P, Klinzing I, Wiegand S et al. Islet transplantation inhibits diabetic retinopathy in the sucrose-fed diabetic Cohen diabetic rat. Invest Ophthalmol Vis Sci 34:2092–96, 1993.

    PubMed  CAS  Google Scholar 

  45. Robison WG Jr, Kador PF, Kinoshita JH. Retinal capillaries: Basement membrane thickening by galactosemia prevented with aldose reductase inhibitor. Science 221:1177–79, 1983.

    Article  PubMed  CAS  Google Scholar 

  46. Vinores SA, Campochiaro PA. Prevention or moderation of some ultra structural changes in the RPE and retina of galactosemic rats by aldose reductase inhibition. Exp Eye Res 49:494–510, 1989.

    Article  Google Scholar 

  47. Kador PF, Takahashi Y, Sato S, Wyman M. Amelioration of diabetes-like retinal changes in galactose-fed dogs. Prev Med 23:717–21, 1994.

    Article  PubMed  CAS  Google Scholar 

  48. Engerman RL, Kern TS. Aldose reductase inhibition fails to prevent retinopathy in diabetic and galactosemic dogs. Diabetes 42:820–25, 1993

    Article  PubMed  CAS  Google Scholar 

  49. Engerman RL, Kern TS, Larson ME. Nerve conduction velocity and aldose reductase inhibition during 5 years diabetes or galactosemia in dogs. Diabetologia 37:141–4, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Engerman RL, Kem TS. Aldose reductase inhibition and retinopathy [letter to editor]. Diabetes 43:338–9, 1994.

    CAS  Google Scholar 

  51. Kador PF, Takahashi Y, Sato S, Wyman M. Aldose reductase, retinal vessel changes and cataracts in galactose-fed dogs. In: Diabetes 1991. Rifkin H, Colwell JA, Taylor SI, eds Elsevier, Amsterdam, pp 373–8, 1991.

    Google Scholar 

  52. Kador PF, Kinoshita JH, Tung WH, Chylack LT Jr. Differences in the susceptibility of various aldose reductases to inhibition. Invest Ophthalmol Vis Sci 19:980–2, 1980.

    PubMed  CAS  Google Scholar 

  53. Kojima K, Matsubara H, Harada T et al. Effects of aldose reductase inhibitor on retinal microangiopathy in streptozotocin-diabetic rats. Jpn J Ophthalmol 29:99–109, 1985.

    PubMed  CAS  Google Scholar 

  54. Corbett JA, Tilton RG, Chang K et al. Aminoguanidine, a novel inhibitor of nitric oxide formation, prevents diabetic vascular dysfunction. Diabetes 41:552–6, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Kihara M, Schemlzer JD, Poduslo JF et al. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals. Proc Natl Acad Sci USA 88:6107–11, 1991.

    Article  PubMed  CAS  Google Scholar 

  56. Soulis-Liparota T, Cooper M, Papazoglou D et al. Retardation by aminoguandine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozotocin-induced diabetic rat. Diabetes 40:1328–34, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. Tilton RG, Chang K, Hasan KS et al. Prevention of diabetic vascular dysfunction by guanidines. Inhibition of nitric oxide synthase versus advanced glycation end-product formation. Diabetes 42:221–32, 1993.

    Article  PubMed  CAS  Google Scholar 

  58. Yagihashi S, Kamijo M, Baba M et al. Effect of aminoguanidine on functional and structural abnormalities in peripheral nerve of STZ-induced diabetic rats. Diabetes 41:47–52, 1992.

    Article  PubMed  CAS  Google Scholar 

  59. Hammes H-P, Brownlee M, Edelstein D et al. Aminoguanidine inhibits the development of accelerated diabetic retinopathy in the spontaneous hypertensive rat. Diabetologia 37:32–5, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Pierce GN, Afzal N, Kroeger EA et al. Cataract formation is prevented by administration of verapamil to diabetic rats. Endocrinology 125:730–35, 1989.

    Article  PubMed  CAS  Google Scholar 

  61. Urbanowski JC, Cohenford MA, Dain JA. Nonenzymatic galactosylation of human serum albumin. J Biol Chem 257:111–5, 1982.

    PubMed  CAS  Google Scholar 

  62. Tilton RG, Chang K, Weigel C et al. Increased ocular blood flow and 125I-albumin permeation in galactose-fed rats: Inhibition with sorbinil. Invest Ophthalmol Vis Sci 29:861–8, 1988.

    PubMed  CAS  Google Scholar 

  63. Tilton RG, Chang K, Pugliese G et al. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 37:1258–70, 1989.

    Article  Google Scholar 

  64. Richard S, Tamas C, Sell DR, Monnier VM. Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Diabetes 40:1049–56, 1991.

    Article  PubMed  CAS  Google Scholar 

  65. Nagaraj RH, Fogarty JF, Kem TS et al. Advanced maillard reaction in dura mater collagen of chronic hyperglycemic dogs: Effect of glycemic control and sorbinil treatment. Diabetes 42(Suppl):240A, 1993.

    Google Scholar 

  66. Zia P, Inoguchi T, Kern TS et al. Characterization of the mechanism for the chronic activation of DAG-PKC pathway in diabetes and hypergalactosemia. Diabetes 43:1122–29, 1994.

    Article  Google Scholar 

  67. Cagliero E, Roth T, Roy S, Lorenzi M. Characteristics and mechanisms of high-glucose-induced over expression of basement membrane components in cultured human endothelial cells. Diabetes 40:102–10, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Kem TS, Kowluru R, Engerman RL. Abnormalities of retinal metabolism in diabetes or galactosemia. ATPases and glutathione. Invest Ophthalmol Vis Sci 35:2962–67, 1994.

    Google Scholar 

  69. Shiba T, Inoguchi T, Sportsman JR et al. Correlation of diacylglycerol and protein kinase C in rat retina to retinal circulation. Am J Physiol 265:E783–93, 1993.

    PubMed  CAS  Google Scholar 

  70. Kowluru R, Kern TS, Engerman RL. Abnormalities of retinal metabolism in diabetes or galactosemia II. Comparison of gamma-glutamyl transpeptidase in retina and cerebral cortex, and effects of antioxidant therapy. Curr Eye Res 13:891–6,1994.

    Article  PubMed  CAS  Google Scholar 

  71. Kowluru R, Kern TS, Engerman RL. Antioxidants prevent retinal glutathione dysmetabolism in diabetes. ARVO abstracts. Invest Ophthalmol Vis Sci 36:S1066,1995.

    Google Scholar 

  72. Kern TS, Kowluru R, Engerman RL. Correction of retinal dysmetabolism in diabetic rats and galactosemic rats by antioxidants, calcium channel blocker, or aldose reductase inhibitor. Abstracts 15th Int Diabetes Fed Congr Japan p 369, 1994.

    Google Scholar 

  73. Kowluru R, Kern T, Engerman R. Antioxidant therapy corrects subnormal free radical defense mechanism in diabetic retina. Diabetes 44(Suppl 1):117A, 1995.

    Google Scholar 

  74. Kern TS, Engerman RL. Kidney morphology in experimental hyperglycemia. Diabetes 36:244–9, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Engerman RL, Kern TS. Hyperglycemia and development of glomerular pathology: Diabetes compared with galactosemia. Kidney Int 36:41–5, 1989.

    Article  PubMed  CAS  Google Scholar 

  76. Engerman RL, Kern TS, Larson ME. Nerve conduction velocity in dogs is reduced in diabetes and not by galactosemia. Metabolism 39:638–40, 1990.

    Article  PubMed  CAS  Google Scholar 

  77. Sharma AK, Thomas PK, Baker RWR. Peripheral nerve abnormalities related to galactose administration in rats. J Neurol Neurosurg Psychiatry 39:794–802, 1976.

    Article  PubMed  CAS  Google Scholar 

  78. Tilton RG, Pugliese G, LaRose LS. Discordant effects of the aldose reductase inhibitor sorbinil on vascular structure and function in chronically diabetic and galactosemic rats. J Diabetes Complications 5:230–7, 1991.

    Article  CAS  Google Scholar 

  79. Sharma AK, Gardiner TA, Archer DB. A morphologic and autoradiographic study of cell death and regeneration in the retinal microvasculature of normal and diabetic rats. Am J Ophthalmol 100:51–60, 1985.

    PubMed  CAS  Google Scholar 

  80. Robison WG Jr, McCaleb ML, Feld LG, et al. Degenerated intramural pericytes (‘ghost cells’) in the retinal capillaries of diabetic rats. Curr Eye Res 10:339–50, 1991.

    Article  PubMed  Google Scholar 

  81. Tilton RG, LaRose LS, Kilo C, Williamson JR. Absence of degenerative changes in retinal and uveal capillaries in diabetic rats. Invest Ophthalmol Vis Sci 27:716–21, 1986.

    PubMed  CAS  Google Scholar 

  82. Engerman RL. Animal models of diabetic retinopathy. Trans Am Acad Ophthalmol Otolaryngol 81:710–15, 1976.

    Google Scholar 

  83. Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol 108:1234–44, 1990.

    Google Scholar 

  84. Kohner EM, Caldwell G, Plehwe WE, et al. Ponalrestat in early diabetic retinopathy. Diabetes 39 (Suppl 1):62A, 1990.

    Google Scholar 

  85. Arauz-Pacheo C, Ramiriz LC, Pruneda L et al. The effect of the aldose reductase inhibitor, ponalrestat, on the progression of diabetic retinopathy. J Diab Compl 6:131–7, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Boston

About this chapter

Cite this chapter

Kern, T.S., Kowluru, R., Engerman, R.L. (1996). Dog and rat models of diabetic retinopathy. In: Shafrir, E. (eds) Lessons from Animal Diabetes VI. Rev.Ser.Advs.Research Diab.Animals (Birkhäuser), vol 6. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-4112-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4112-6_22

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-8658-5

  • Online ISBN: 978-1-4612-4112-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics