Skip to main content

Exploratory Vision: Some Implications for Retinal Sampling and Reconstruction

  • Chapter
Exploratory Vision

Part of the book series: Springer Series in Perception Engineering ((SSPERCEPTION))

Abstract

As we move about a room, inspecting its contents, we ordinarily do not confuse our own change of viewpoint with changes in the content of the scene. As we move, the image of a single object or location may fall successively on parts of the retina with markedly different optical qualities and photoreceptor densities. Yet, we typically manage not to confuse the particular characteristics of a retinal region with the appearance of an object imaged on it. An object fixated and then viewed in periphery does not seem to move or change, nor does an object first viewed peripherally and then fixated although, once fixated, we are likely able to answer questions about the detailed appearance of the fixated object that we could not answer when it was viewed peripherally. This transformational constancy is all the more remarkable if we examine the initial visual information, the pattern of excitation of photoreceptors in each retinal region. This chapter analyzes the retina as a sampling array in motion, discussing the consequences of motion for reconstruction, aliasing, and visual representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apostol, T. M. (1969). Calculus (2nd Ed.), Volume II. Waltham, Massachusetts: Xerox.

    MATH  Google Scholar 

  • Artal, P., Derrington, A. M. & Colombo, E. (1995). Refraction, aliasing, and the absence of motion reversals in peripheral vision. Vision Research, 35, 939–947.

    Article  Google Scholar 

  • Artal, P., Navarro, R., Brainard, D. H., Galvin, S. J. & Williams, D. R. (1992). Off-axis optical quality of the eye and retinal sampling. Investigative Ophthalmology and Visual Science (Suppl.), 33, 1342.

    Google Scholar 

  • Ben-Israel, A. & Greville, N. E. (1974). Generalized Inverses; Theory and Applications. New York: Wiley.

    MATH  Google Scholar 

  • Bossomaier, T. R. J., Snyder, A. W. & Hughes, A. (1985). Irregularity and aliasing: Solution? Vision Research, 25, 145–147.

    Article  Google Scholar 

  • Burr, D. C. & Ross, J. (1979). How does binocular delay give information about depth? Vision Research, 19, 523–532.

    Article  Google Scholar 

  • Campbell, F. W. & Green, D. G. (1965). Optical and retinal factors affecting visual resolution. Journal of Physiology, 181, 576–593.

    Google Scholar 

  • Campbell, E W. & Gubisch, R. W. (1966). Optical quality of the human eye. Journal of Physiology, 186, 558–578.

    Google Scholar 

  • Davis, P. J. (1963). Interpolation and Approximation. New York: Blaisdell.

    MATH  Google Scholar 

  • Dym, H. & McKean, H. P. (1972). Fourier Series and Integrals. New York: Academic Press.

    MATH  Google Scholar 

  • Galvin, S. J. & Williams, D. R. (1992). No aliasing at edges in normal viewing. Vision Research, 32, 2251–2259.

    Article  Google Scholar 

  • Hirsch, J. & Hylton, R. (1984). Quality of the primate photoreceptor lattice and the limits of spatial vision. Vision Research, 24, 1481–1492.

    Article  Google Scholar 

  • Hirsch, J. & Miller, W. H. (1987). Does cone positional disorder limit resolution? Journal of the Optical Society of America A, 4, 1481–1492.

    Article  Google Scholar 

  • Jennings, J. A. M. & Charmen, W N. (1981). Off-axis image quality in the human eye. Vision Research, 21, 445–455.

    Article  Google Scholar 

  • Johnson, L. W. & Riess, R. D. (1982). Numerical Analysis (2nd Ed.). Reading, Massachusetts: Addison-Wesley.

    MATH  Google Scholar 

  • Mallot, H. A., von Seelen, W. & Giannakopoulos, F. (1990). Neural mapping and space-variant image processing. Neural Networks, 3, 245–263.

    Article  Google Scholar 

  • Maloney, L. T. & Ahumada, Jr., A. J. (1989). Learning by assertion: A method for calibrating a simple visual system. Neural Computation, 1, 387–395.

    Article  Google Scholar 

  • Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: Freeman.

    Google Scholar 

  • Navarro, R., Artal, P. & Williams, D. R. (1993). Modulation transfer of the human eye as a function of retinal eccentricity. Journal of the Optical Society of America A, 10, 201–212.

    Article  Google Scholar 

  • Østerberg, G. (1935). Topography of the layer of rods and cones in the human retina. Acta Ophthalmologic (supplement), 6, 1–103.

    Google Scholar 

  • Packer, O. & Williams, D. R. (1992). Blurring by fixational eye movements. Vision Research, 32, 1931–1939.

    Article  Google Scholar 

  • Poggio, T. & Torre, V. (1984). Ill-posed problems and regularization analysis in early vision. In Image Understanding Workshop (pp. 257–263). New Orleans, Louisiana.

    Google Scholar 

  • Poggio, T., Torre, V. & Koch, C. (1985). Computational vision and regularization theory. Nature, 317, 314–319.

    Article  Google Scholar 

  • Rock, I. (1983). The Logic of Perception. Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  • Schölkopf, B. & Mallot, H. A. (1994). View-based cognitive mapping and path planning. Technical Report 7, Max-Planck-Institut für Biologische Kybernetik, Tübingen, Germany.

    Google Scholar 

  • Simonet, P. & Campbell, M. C. W. (1990). The optical transverse chromatic aberration on the fovea of the human eye. Vision Research, 30, 187–206.

    Article  Google Scholar 

  • Snyder, A. W., Bossomaier, T. R. J. & Hughes, A. (1986). Optical image quality of the cone mosaic. Science, 231, 499–501.

    Article  Google Scholar 

  • Snyder, A. W., Laughlin, S. B. & Stavenga, D. G. (1977). Information capacity of eyes. Vision Research, 17, 1163–1175.

    Article  Google Scholar 

  • Snyder, A. W. & Miller, W. H. (1977). Photoreceptor diameter and spacing for highest resolving power. Journal of the Optical Society of America, 67, 696–698.

    Article  Google Scholar 

  • Sperling, G. (1989). Three stages and two systems of visual processing. Spatial Vision, 4, 183–207.

    Article  Google Scholar 

  • Steinman, R. M. (1965). Effect of target size, luminance, and color on monocular fixation. Journal of the Optical Society of America, 35, 1158–1165.

    Article  Google Scholar 

  • Steinman, R. M. & Levinson, J. Z. (1990). The role of eye movement in the detection of contrast and spatial detail. In E. Kowler (Ed.), Eye Movements and their Role in Visual and Cognitive Processes (pp. 115–212). Amsterdam: Elsevier.

    Google Scholar 

  • Thibos, L. N. (1987). Calculation of the influence of lateral chromatic aberration on image quality across the visual field. Journal of the Optical Society of America A, 4, 1673–1680.

    Article  Google Scholar 

  • Thibos, L. N., Bradley, A., Still, D. L., Zhang, X. & Howarth, P. A. (1990). Theory and measurement of ocular chromatic aberration. Vision Research, 30, 33–49.

    Article  Google Scholar 

  • Westheimer, G. & McKee, S. P. (1975). Visual acuity in the presence of retinal-image motion. Journal of the Optical Society of America, 65, 847–850.

    Article  Google Scholar 

  • Williams, D. R. (1985). Aliasing in human foveal vision. Vision Research, 25, 195–205.

    Article  Google Scholar 

  • Williams, D. R. & Collier, R. J. (1983). Consequences of spatial sampling by a human photoreceptor mosaic. Science, 221, 385–387.

    Article  Google Scholar 

  • Woodhouse, J. M. & Barlow, H. B. (1982). Spatial and temporal resolution and analysis. In H. B. Barlow & J. Mollon (Eds.), The Senses (pp. 133–164). Cambridge, England: Cambridge University Press.

    Google Scholar 

  • Wyszecki, G. & Stiles, W. S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: Wiley.

    Google Scholar 

  • Yellott, Jr., J. I. (1982). Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing. Vision Research, 22, 1205–1210.

    Article  Google Scholar 

  • Yellott, Jr., J. I. (1983). Spectral consequences of photoreceptor sampling in the Rhesus monkey. Science, 221, 385–387.

    Article  Google Scholar 

  • Yellott, Jr., J. I. (1990). The photoreceptor mosaic as an image sampling device. In Advances in Photoreception (pp. 117–133). Washington, DC: National Academy Press.

    Google Scholar 

  • Yellott, Jr., J. I., Wandell, B. A. & Cornsweet, T. N. (1984). The beginnings of visual perception: The retinal image and its initial encoding. In Handbook of Physiology: The Nervous System (pp. 257–316). New York: Easton.

    Google Scholar 

  • Zayed, A. I. (1993). Advances in Shannon’s Sampling Theory. Boca Raton, Florida: CRC Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Maloney, L.T. (1996). Exploratory Vision: Some Implications for Retinal Sampling and Reconstruction. In: Landy, M.S., Maloney, L.T., Pavel, M. (eds) Exploratory Vision. Springer Series in Perception Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3984-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3984-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8460-4

  • Online ISBN: 978-1-4612-3984-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics