Skip to main content

Numerical Optimal Control Via Smooth Penalty Functions

  • Chapter
Computation and Control

Part of the book series: Progress in Systems and Control Theory ((PSCT,volume 1))

  • 182 Accesses

Abstract

The use of first order necessary conditions to solve optimal control problems has two principal drawbacks: a sufficiently close initial approximation is required to ensure local convergence and this initial approximation must be cHosen so that the convergence is to a local optimum. We present a class of algorithms which resolves both of these difficulties and which is ultimately based on the solution of first order necessary conditions. The key ingredients are three smooth penalty functions (the quadratic penalty for equality constraints and the log barrier or quadratic loss for inequality constraints), a parameterized system of nonlinear equations, and efficient predictor-corrector continuation techniques to follow the penalty path to optimality. This parameterized system of equations is essentially a homotopy which is derived from these penalty functions, contains the penalty path as a solution, and represents a perturbation of the first order necessary conditions. However, it differs significantly from Homotopies for nonlinear equations in that an unconstrained optimization technique is required to obtain an initial point.

This work was supported by the Air Force Office of Scientific Research through Grant #AFOSR-88-0059 and by the National Science Foundation through Grant #DMS-87-04679

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Balakrishnan and L. W. Neustadt, eds., Computing MetHods in Optimization Problems, Academic Press, New York, 1964.

    MATH  Google Scholar 

  2. R. E. Bellman and S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, 1962.

    MATH  Google Scholar 

  3. A. B. Bryson Jr. and Y. C. Ho, Applied Optimal Control: Optimization, Estimation, and Control, Hemisphere Publishing Corporation, Washington, D.C., 1975.

    Google Scholar 

  4. L. Cesari, Optimization Theory and Applications, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  5. A. V. Fiacco and G. P. McCormik, Nonlinear Sequential Unconstrained Minimization Techniques, John Wiley and Sons, Inc., New York, 1968.

    MATH  Google Scholar 

  6. R. Fletcher, Practical MetHods of Optimization, Second Edition, John Wiley k Sons Ltd., New York, 1987.

    MATH  Google Scholar 

  7. I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, 1963.

    Google Scholar 

  8. S. T. Glad, “A combination of penalty function and multiplier metHods for solving optimal control problems”, J. Opt. Th. Applic, v. 28 (1979), 303–329.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. GRIEWANK and Ph. L. TOINT, “Numerical experiments with partially separable optimization problems”, in D. F. Griffiths, ed., Nu¬merical Analysis, Dundee 1983, Lecture Notes in Mathematics 1066, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  10. W. A. Gruver and E. Sachs, Algorithmic Methods in Optimal Control, Pitman Publishing Inc., London, 1980.

    Google Scholar 

  11. M. HASAN and A. B. Poore, “A bifurcation analysis of the quadratic penalty-log barrier function”, in preparation.

    Google Scholar 

  12. L. Hasdorff, Gradient Optimization and Nonlinear Control, John Wiley k Sons, New York, 1976.

    Google Scholar 

  13. H.B. Keller, “Numerical solution of bifurcation and nonlinear eigenvalue problems”, Applications of Bifurcation Theory (P. Rabinowitz, ed.), Academic Press, New York, 1977, pp. 359–384.

    Google Scholar 

  14. C. T. KELLEY and E. W. Sachs, “Quasi-Newton metHods and unconstrained optimal control problems”, SIAM J. Control and Optimization, v. 25 (1987), 1503–1515.

    Google Scholar 

  15. D. KRAFT, “On converting optimal control problems into nonlinear programming problems”, Computational Mathematical Programming, NATO ASI series, vol F15 (K. Schittkowski, ed.), Springer-Verlag, Berlin, 1985.

    Google Scholar 

  16. E. B. LEE and L. MARKUS, Foundations of Optimal Control Theory, John Wiley and Sons, Inc., New York, 1967.

    Google Scholar 

  17. B. N. LUNDBERG, A. B. Poore and B. YANG, “Smooth penalty functions and continuation metHods for constrained optimization”, to appear in Lectures in Applied Mathematics.

    Google Scholar 

  18. B. N. LUNDBERG and A. B. Poore, “Variable order Adams-Bash-forth predictors with error-stepsize control in continuation metHods”, submitted for publication, 1988.

    Google Scholar 

  19. I. H. Mufti, Computational Methods in Optimal Control Problems, Springer-Ver lag, New York 1970.

    MATH  Google Scholar 

  20. L. W. Neustadt, Optimization: A Theory of Necessary Conditions, Princeton University Press, Princeton, New Jersey, 1976.

    MATH  Google Scholar 

  21. A. B. Poore and Q. Al-Hassan, “The expanded Lagrangian system for constrained optimization problems”, SIAM J. Control and Optimization, v. 26 (1988), 417–427.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. B. Poore and C. A. Tiahrt, “Bifurcation problems in nonlinear parametric programming”, Mathematical Programming, v. 39 (1987), 189–205.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. L. Teo and L. T. Yeo, “On the computational metHods of optimal control problems”, Int. J. Systems Sei., v. 10 (1979), 51–76.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. M. Tikhomirov, Fundamental Principles of the Theory of Extremal Problems, John Wiley &, Sons, New York, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Birkhäuser Boston

About this chapter

Cite this chapter

Hasan, M., Lundberg, B.N., Poore, A.B., Yang, B. (1989). Numerical Optimal Control Via Smooth Penalty Functions. In: Computation and Control. Progress in Systems and Control Theory, vol 1. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3704-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3704-4_7

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3438-4

  • Online ISBN: 978-1-4612-3704-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics