Skip to main content

Wiles’ Theorem and the Arithmetic of Elliptic Curves

  • Chapter
Modular Forms and Fermat’s Last Theorem

Abstract

Thanks to the work of Wiles [Wi], completed by Taylor-Wiles [TW] and extended by Diamond [Di], we now know that all elliptic curves over the rationals (having good or semi-stable reduction at 3 and 5) are modular. This breakthrough has far-reaching consequences for the arithmetic of elliptic curves. As Mazur wrote in [Ma3], “It has been abundantly clear for years that one has a much more tenacious hold on the arithmetic of an elliptic curve E/Q if one supposes that it is […] parametrized [by a modular curve].” This expository article explores some of the implications of Wiles’ theorem for the theory of elliptic curves, with particular emphasis on the Birch and Swinnerton-Dyer conjecture, now the main outstanding problem in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J-F. Boutot, H. Carayol, Uniformisation p-adique des courbes de Shimura: les théorèmes de Cerednik et de Drinfeld, Astérisque 196–197 (1991), 45–158.

    Google Scholar 

  2. M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves, CICMA preprint; Invent. Math., to appear.

    Google Scholar 

  3. M. Bertolini and H. Darmon (with an appendix by B. Edixhoven) A rigid analytic Gross-Zagier formula and arithmetic applications, CICMA preprint; submitted.

    Google Scholar 

  4. M. Bertolini and H. Darmon, Heegner points,p-adic L-functions and the Cerednik-Drinfeld uniformization, CICMA preprint; submitted.

    Google Scholar 

  5. D. Bump, S. Friedberg, and J. Hoffstein, Non-vanishing theorems for L-functions of modular forms and their derivatives, Annals of Math. (1991).

    Google Scholar 

  6. J. Buhler, B. Gross, and D. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3, Math. Comp. 44 (1985), 473–481.

    MathSciNet  MATH  Google Scholar 

  7. I.V. Cerednik, Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(kw) with compact quotient (in Russian) Math. Sbornik 100 (1976), 59–88. Transi. in Math. USSR Sb. 29 (1976), 55–78.

    Article  Google Scholar 

  8. H. Daghigh, McGill PhD. Thesis, in progress.

    Google Scholar 

  9. F. Diamond, On deformation rings and Hecke rings, to appear in Annals of Math.

    Google Scholar 

  10. V.G. Drinfeld, Coverings of p-adic symmetric regions, (in Rus-sian), Funkts. Anal. Prilozn. 10 (1976), 29–40. Transl. in Funct. Anal. Appl. 10 (1976), 107–115.

    Article  MathSciNet  Google Scholar 

  11. B.H. Gross, Heegner points on Xo(N), in Modular Forms, R.A.Rankin ed., p. 87–107, Ellis Horwood Ltd., 1984.

    Google Scholar 

  12. B.H. Gross, Heights and the special values of L-series, CMS conference proceedings, Volume 7 (1987).

    Google Scholar 

  13. B.H. Gross, Kolyvagin’s work on modular elliptic curves, in L-functions and arithmetic (Durham, 1989) 235–256, LMS Lecture Notes 153 Cambridge University Press, Cambridge 1991.

    Google Scholar 

  14. B.H. Gross, D.B. Zagier, Heegner points and derivatives of L-series, Inv. Math. (1986).

    Google Scholar 

  15. H. Jacquet, R.P. Langlands, Automorphic forms on GL(2), Springer Lecture Notes, v. 114, (1970).

    MATH  Google Scholar 

  16. B. Jordan, On the Diophantine arithmetic of Shimura curves, Harvard PhD thesis, 1981.

    Google Scholar 

  17. K. Kato, Euler systems, Iwasawa theory, and Selmer groups, preprint.

    Google Scholar 

  18. K. Kato, p-adic Hodge theory and special values of zeta functions of elliptic cusp forms, in preparation.

    Google Scholar 

  19. V.A. Kolyvagin, Finiteness of E(Q) and III(E/Q) for a subclass of Weil curves, (Russian) Izv. Akad. Nauk. Ser. Mat. 52 (1988) no 6., 1154–1180; translation in Math USSR Izv. 33 no. 3 (1989), 473–499.

    MathSciNet  Google Scholar 

  20. V.A. Kolyvagin, Euler Systems, The Grothendieck festschrift, Vol. II, 435–483, Progr. in Math. 87, Birkhaüser, 1990.

    Google Scholar 

  21. B. Mazur, P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 35 (1974), 1–61.

    MathSciNet  Google Scholar 

  22. B. Mazur, On the arithmetic of special values of L-functions, In-vent. Math. 55 no. 3 (1979), 207–240.

    MathSciNet  MATH  Google Scholar 

  23. B. Mazur, Modular curves and arithmetic, Proceedings of the Int. Congress of Math., (1983), Warszawa, pp. 185–209.

    Google Scholar 

  24. B. Mazur, J. Tate, and J. Teitelbaum, On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1–48.

    MathSciNet  MATH  Google Scholar 

  25. Murty, M.R., and Murty, V.K., Mean values of derivatives of modular L-series, Annals of Math. 133 (1991), 447–475.

    Article  MATH  Google Scholar 

  26. J. Nekovar, On the p-adic heights of Heegner cycles, Math. Ann.302 (1995), 609–686.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. Perrin-Riou, Points de Heegner et dérivées de fonctions L p-adiques, Invent. Math. 89 no. 3 (1987), 455–510.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Roberts, Shimura curves analogous to X o (N), Harvard PhD. Thesis, 1989.

    Google Scholar 

  29. K. Rubin, p-adic L-functions and rational points on elliptic curves with complex multiplication, Invent. Math. 107 (1992), 323–350.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Annals of Math. 141, No. 3 (1995), 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Ulmer, A construction of local points on elliptic curves over modular curves, Inter. Math. Res. Notices 7 (1995), 349–363.

    Article  MathSciNet  Google Scholar 

  32. M-F. Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Math. 800, Springer Verlag.

    Google Scholar 

  33. J-L WaldspurgerSur les valeurs de certaines fonctions L auto-morphes en leur centre de symmétrie, Compos. Math. 54 no. 2 (1985), 173–242.

    MathSciNet  MATH  Google Scholar 

  34. L. WashingtonIntroduction to Cyclotomic Fields, GTM 83 Springer-Verlag, 1982.

    Book  MATH  Google Scholar 

  35. A. Wiles, Modular elliptic curves and Fermat’s last theorem, An-nals of Math. 141, No. 3 (1995), 443–551.

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Zhang, Heights of Heegner cycles and derivatives of L-series, preprint.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Darmon, H. (1997). Wiles’ Theorem and the Arithmetic of Elliptic Curves. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat’s Last Theorem. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1974-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1974-3_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98998-3

  • Online ISBN: 978-1-4612-1974-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics