Skip to main content

Skull Development and Abnormalities

  • Chapter
Neuroimaging
  • 596 Accesses

Abstract

Before the advent of computed tomography (CT), plain skull X-ray films and special views of the skull were an art form belonging to the radiographer who was knowledgeable in positioning the patient (nonrotated) and film technique (adequately penetrated). The radiologist also needed keen vision and knowledge of anatomy to effectively interpret the images (Fig. 12.1). Subtle clues to the intracranial contents could be discerned by the presence of calcification, skull erosion, and signs of increased intracranial pressure, as with demineralization of the sellae or an increase in the size of mastoid emissary veins, as well as by recognition of diseases primarily affecting the osseous structure of the skull in the form of sclerotic and/or lytic lesions (Fig. 12.2). Computed tomography revolutionized the radiologist’s ability to see the intrinsic structure of the skull in cross-section. This decreased the demand for skull films, which resulted in a decline in the ability of the radiographer and the radiologist. Magnetic resonance imaging (MRI) further decreased the demands for skull films, by showing the intracranial contents even more exquisitely than CT. The relative lack of success of MR in visualizing the cranial vault, because of the nonmobile protons within bone, has not had the impact on skull films that CT has. Today, the skull radiograph plays a relatively limited role in the evaluation of the pediatric and adult patient. Except in the situation of trauma, craniosynostosis, and known genetic diseases affecting the cranial structures, the skull X-ray tends to be a procedure that follows the recognition of its need on the basis of another examination, such as CT, MR, or the radionuclide study. The purpose of this chapter is to put into perspective aspects of the development of the skull and the resultant deformities that occur from premature sutural synostosis, as well as to look at the visualization of the skull vault on plain films, CT, and MR relative to the diseases that affect it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shapiro R, Robinson F. The embryogenesis of the human skull: an anatomic and radiographic atlas. Cambridge, MA: Harvard University Press, 1980.

    Google Scholar 

  2. Madeline LA, Elster AD. Suture closure in the human chondrocranium: CT assessment. Radiology 1995; 196: 747 - 756.

    PubMed  CAS  Google Scholar 

  3. Fernbach SK, Naidich TP. Radiological evaluation of craniosynostosis. In: Cohen MM Jr, ed. Craniosynostosis: Diagnosis, Evaluation and Management. New York, Raven Press, 1986, pp. 191 - 214.

    Google Scholar 

  4. Cohen MM Jr. History, terminology and classification of craniosynostosis. In: Cohen MM Jr, ed. Craniosynostosis: Diagnosis, Evaluation, and Management. New York, Raven Press, 1986, pp. 1 - 21.

    Google Scholar 

  5. Virchow HR. Über den Cretinismus, namentlich in Franken, und über pathologische Schädelforamen. Verb Phys Med Ges (Wurzburg) 1852; 2: 230 - 271.

    Google Scholar 

  6. Moss ML. Functional anatomy of cranial synostosis. Childs Brain 1975; 1: 22 - 33.

    PubMed  CAS  Google Scholar 

  7. Cohen MM Jr. Genetic perspectives on craniosynostosis and syndromes with craniosynostosis. J Neurosurg 1977; 47: 886 - 898.

    Article  PubMed  Google Scholar 

  8. Reardon W, Winter RM, Rutland P, et al. Mutations in the fibroblast growth receptor 2 gene cause Crouzon syndrome. Nature Genet 1994; 8: 98 - 103.

    Article  PubMed  CAS  Google Scholar 

  9. Muenke M, Schell U, Hehr A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syn drome. Nature Genet 1994; 8: 269 - 274.

    Article  PubMed  CAS  Google Scholar 

  10. Wilkie AOM, Slaney SF, Oldridge M, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nature Genet 1995; 9: 165 - 172.

    Article  PubMed  CAS  Google Scholar 

  11. Preston RA, et al. A gene for Crouzon craniofacial dysostosis maps to the long arm of chromosome 10.Nature Genet 1994; 7: 149 - 153.

    Article  PubMed  CAS  Google Scholar 

  12. Brueton LA, van Herwerden L, Chotai KA, et al. The mapping of a gene for craniosynostosis: Evidence for link age of the Saethre-Chotzen syndrome to distal chromosome 7p. J Med Genet 1992; 29: 681 - 685.

    Article  PubMed  CAS  Google Scholar 

  13. Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 1991; 352: 539 - 540.

    Article  PubMed  CAS  Google Scholar 

  14. Hui C-C, Joyner Al. A mouse model of Greig cephalo polysyndactyly syndrome: The extra-toes’ mutation contains an intragenic deletion of the Gli3 gene. Nature Genet 1993; 3: 241 - 246.

    Article  PubMed  CAS  Google Scholar 

  15. Andersson H. Craniosynostosis as a complication after operation for hydrocephalus. Acta Paediatr Scand 1966; 55: 192 - 196.

    Article  Google Scholar 

  16. Reilly Bi, Leeming JM, Fraser D. Craniosynostosis in the rachitic spectrum. J Pediatr 1964; 64: 369 - 405.

    Google Scholar 

  17. Currarino G, Neuhauser EBD, Reyersbach GC, et al. Hypophosphatasia. Am J Roentgenol 1957; 78: 392 - 419.

    CAS  Google Scholar 

  18. Duggan CA, Keener EB, Goy BB. Secondary craniosynostosis. AJR 1970; 109: 277 - 293.

    Google Scholar 

  19. Hunter AGW, Rudd NL. Craniosynostosis I sagittal synostosis: Its genetics and associated clinical findings in 214 patients who lacked involvement of the coronal suture(s). Teratology 1976; 14: 185.

    Article  PubMed  CAS  Google Scholar 

  20. Shillito JJ, Matson DD. Craniosynostosis: A review of 519 surgical patients. Pediatrics 1968; 41: 829 - 853.

    PubMed  Google Scholar 

  21. Dominguez R, Oh KS, Bender T, et al. Uncomplicated trigonocephaly. Radiology 1981; 140: 681 - 688.

    PubMed  CAS  Google Scholar 

  22. Currarino G, Silverman FN. Orbital hypotelorism, arrhinencephaly, and trigonocephaly. Radiology 1960; 74: 206 - 217.

    PubMed  CAS  Google Scholar 

  23. Cohen MM Jr. Syndromes with craniosynostosis. In: Cohen MM Jr, ed. Craniosynostosis: Diagnosis, Evaluation, and Management. New York, Raven Press, 1968, pp. 413 - 590.

    Google Scholar 

  24. Shiang R, et al. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994; 78: 335 - 342.

    Article  PubMed  CAS  Google Scholar 

  25. Rousseau F, et al. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994; 371: 252 - 254.

    Article  PubMed  CAS  Google Scholar 

  26. Saldino RM, Steinback HL, Epstein CJ. Familial acrocephalosyndactyly (Pfeiffer syndrome). AJR 1972; 116: 609 - 622.

    CAS  Google Scholar 

  27. Schauerte EW, St-Aubin PM. Progressive synostosis in Apert’s syndrome (acrocephalosyndactyly), with a description of roentgenographic changes in the feet. AJR 1966; 97: 67.

    CAS  Google Scholar 

  28. Cohen MM Jr., Kreiborg S. An updated pediatric perspective on the Apert syndrome. Am J Dis Child 1993;147:989–993.

    Google Scholar 

  29. Hunter AGW, Rudd NL. Craniosynostosis. II. Coronal synostosis: Its familial characteristics and associated clinical findings in 109 patients lacking bilateral polysyndactyly or syndactyly. Teratology 1977; 15: 301 - 310.

    Article  PubMed  CAS  Google Scholar 

  30. Atkinson FRB. Hereditary cranio-facial dysostosis, or Crouzon’s disease. Med Press Circular 1937; 195: 118.

    Google Scholar 

  31. Hajdu N, et al. Cranio-skeletal dysplasia. Br J Radiol . 1948; 21: 42.

    Article  PubMed  CAS  Google Scholar 

  32. Jarvis JL, Keats TE. Cleidocranial dysostosis. AJNR 1974; 10. Nature 121: 5 - 16.

    Google Scholar 

  33. Pozo JL, Crockar HA, Ransford AO. Basilar impression in osteogenesis imperfecta. J Bone Joint Surg [Br] 1984; 66: 233.

    CAS  Google Scholar 

  34. Bartynski WS, Barnes PD, Waliman JK. Cranial CT of autosomal recessive osteoporosis. AJNR 1989; 10: 543 - 550.

    PubMed  CAS  Google Scholar 

  35. Sulik KK, et al. Mandibulofacial dysostosis (Treacher Collins Syndrome): A new proposal for its pathogenesis.Am J Med Genet 1987; 27: 359.

    Article  PubMed  CAS  Google Scholar 

  36. Stevenson RE, et al. A digito-palatal syndrome with associated anomalies of the heart, face and skeleton. J Med Genet 1980; 17: 238.

    Article  PubMed  CAS  Google Scholar 

  37. Hecht JT, Nelson FW, Butler II, et al. Computed tomography of the foramen magnum: Achondroplastic values compared to normal standards. Am J Med Genet 1985; 20; 355 - 360.

    Article  PubMed  CAS  Google Scholar 

  38. Watts RWE, et al. Computed tomography studies on patients with mucopolysaccharidoses. Neuroradiology 1981; 21: 9.

    Article  PubMed  CAS  Google Scholar 

  39. Thomas SL, Childress MH, Quinton B. Hypoplasia of the odontoid with atlanto-axial subluxation in Hurler’s syndrome. Pediatr Radiology 1985; 15: 353 - 354.

    Article  CAS  Google Scholar 

  40. Lipson Si. Dysplasia of the odontoid process in Morquio’s syndrome causing quadriparesis. J Bone Joint Surg 1977;59-A:340–344.

    Google Scholar 

  41. Zimmerman RA, Bilaniuk LT. Age related incidence of pineal calcification detected by CT. Radiology 1982; 142: 659 - 662.

    PubMed  CAS  Google Scholar 

  42. Bull JWD, Nixon WLB, Pratt RTC, et al. Paget’s disease of the skull and secondary basilar impression. Brain 1959; 82: 10 - 26.

    Article  PubMed  CAS  Google Scholar 

  43. Casselman JW, DeJonge I, Neyt L, et al. MRI in craniofacial fibrous dysplasia. Neuroradiology 1993; 35: 234 - 237.

    Article  PubMed  CAS  Google Scholar 

  44. Meyer J, Oot R, Lindfors K. CT appearance of clival chordomas. J Comp Assist Tomogr 1986; 10: 34 - 38.

    Article  CAS  Google Scholar 

  45. Sze G, Uichanco LS III, Brant-Zawadzki MN, et al. Chordomas: MR imaging. Radiology 1988; 166: 187 - 191.

    PubMed  CAS  Google Scholar 

  46. Lee YY, Van Tassel P. Craniofacial chondrosarcomas: Imaging findings in 15 untreated cases. Am J Neuroradiol 1989; 10: 165 - 170.

    PubMed  CAS  Google Scholar 

  47. Lee YY, Van Tassel P, Raymond AK. Intracranial dural chondrosarcoma. Am J Neuroradiol 1988; 9: 1189 - 1193.

    PubMed  CAS  Google Scholar 

  48. Oot RF, Melville GE, New PF, et al. The role of MR and CT in evaluating clival chordomas and chondrosarcomas. AJR 1988; 151: 567 - 575.

    PubMed  CAS  Google Scholar 

  49. Kornreich L, Grunebaum M, Ziv N, et al. Osteogenic sarcoma of the calvarium in children: CT manifestations. Neuroradiology 1988; 30: 439.

    Article  PubMed  CAS  Google Scholar 

  50. Friend SH, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 232: 643 - 646.

    Article  Google Scholar 

  51. Tefft M, Fernandez C, Donaldson M, et al. Incidence of meningeal involvement by rhabdomyosarcoma of the head and neck in children: A report of the Intergroup Rhabdomyosarcoma Study (IRS). Cancer 1978; 42: 253.

    Article  PubMed  CAS  Google Scholar 

  52. Rawlings CE, Wilkins RH. Solitary eosinophilic granuloma of the skull. Neurosurgery 1984; 15 (2): 155.

    Article  PubMed  Google Scholar 

  53. Moore JB, Kulkarni R, Crutcher DC, et al. MRI in multifocal eosinophilic granuloma: Staging disease and monitoring response to therapy. Am J Pediatr Hematol Oncol 1989; 11 (2): 174.

    PubMed  CAS  Google Scholar 

  54. Greenberg HS, Deck MGF, Vikram B, et al. Metastasis to the base of the skull: Clinical findings in 43 patients. Neurology 1981; 31: 530 - 537.

    Article  PubMed  CAS  Google Scholar 

  55. West MS, Russell EJ, Breit R, et al. Calvarial and skull base metastases: Comparison of nonenhanced and Gd-DTPAenhanced MR images. Radiology 1990; 174: 85 - 91.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimmerman, R.A. (2000). Skull Development and Abnormalities. In: Zimmerman, R.A., Gibby, W.A., Carmody, R.F. (eds) Neuroimaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1152-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1152-5_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7025-6

  • Online ISBN: 978-1-4612-1152-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics