Skip to main content

Changing Views of NREM Sleep Homeostatic Regulation

  • Chapter
  • First Online:
Dynamic Structure of NREM Sleep

Abstract

The homeostatic sleep regulation idea underwent important development. Sleep homeostasis was first connected to the duration of the preceding awake time. Due to increasing innovative research in this field with convincing evidences on local sleep regulation, it seems that beyond the length of waking time, use-dependent afferent stimulation and synaptic upscaling (learning) are the main factors regulating the NREM sleep slow-wave activity (SWA). Further achievement of the same research line was to obtain evidences that plastic modulation of local slow-wave power during NREM sleep is closely related to the recreation of cognitive functions in the cortex, mainly in the frontal lobes. Slow-wave homeostasis and use-dependent plasticity are probably two sides of the same coin representing the biological function of slow-wave sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achermann P, Finelli LA, Borbély A. Unihemispheric enhancement of delta power in human frontal sleep EEG by prolonged wakefulness. Brain Res. 2001;913(2):220–3.

    Article  PubMed  CAS  Google Scholar 

  • Aeschbach D, Cutler AJ, Ronda JM. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci. 2008;28(11):2766–72.

    Article  PubMed  CAS  Google Scholar 

  • Bersagliere A, Achermann P. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res. 2010;19(1 Pt 2):228–37.

    Article  PubMed  Google Scholar 

  • Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204.

    PubMed  Google Scholar 

  • Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol. 1981;51(5):483–95.

    Article  PubMed  Google Scholar 

  • Borbély AA, Achermann P, Trachsel L. Tobler sleep initiation and initial sleep intensity: interactions of homeostatic and circadian mechanisms. J Biol Rhythms. 1989;4(2):149–60.

    Article  PubMed  Google Scholar 

  • Cajochen C, Foy R, Dijk DJ. Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res Online. 1999;2(3):65–9.

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Beersma DG, Daan S. EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms. 1987a;2(3):207–19.

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Beersma DG, Daan S, Bloem GM, Van den Hoofdakker RH. Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur Arch Psychiatry Neurol Sci. 1987b;236(6):323–8.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg I, March JD, Fein G, Floyd TC, Walker JM, Price L. Period and amplitude analysis of 0.5-3 c/sec activity in NREM sleep of young adults. Electroencephalogr Clin Neurophysiol. 1978;44(2):202–13.

    Article  PubMed  CAS  Google Scholar 

  • Finelli LA, Borbély AA, Achermann P. Functional topography of the human nonREM sleep electroencephalogram. Eur J Neurosci. 2001;13(12):2282–90.

    Article  PubMed  CAS  Google Scholar 

  • Horne JA. Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br J Psychiatry. 1993;162:413–9.

    Article  PubMed  CAS  Google Scholar 

  • Horne JA, Minard A. Sleep and sleepiness following a behaviourally ‘active’ day. Ergonomics. 1985;28(3):567–75.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature. 2004;430(6995):78–81.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, Tononi G. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci. 2006;9(9):1169–76.

    Article  PubMed  CAS  Google Scholar 

  • Huber R, Määttä S, Esser SK, Sarasso S, Ferrarelli F, Watson A, Ferreri F, Peterson MJ, Tononi G. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci. 2008;28(31):7911–8.

    Article  PubMed  CAS  Google Scholar 

  • Kattler H, Dijk DJ, Borbély AA. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res. 1994;3(3):159–64.

    Article  PubMed  Google Scholar 

  • Knowles JB, MacLean AW, Salem L, Vetere C, Coulter M. Slow-wave sleep in daytime and nocturnal sleep: an estimate of the time course of “process S”. J Biol Rhythms. 1986;1(4):303–8.

    Article  PubMed  CAS  Google Scholar 

  • Krueger JM, Obál F. A neuronal group theory of sleep function. J Sleep Res. 1993;2(2):63–9.

    Article  PubMed  Google Scholar 

  • Krueger JM, Rector DM, Roy S, Van Dongen HP, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008;9(12):910–9.

    Article  PubMed  CAS  Google Scholar 

  • Marzano C, Ferrara M, Curcio G, De Gennaro L. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep. J Sleep Res. 2010;19(2):260–8.

    Article  PubMed  Google Scholar 

  • McCarley RW. Neurobiology of REM and NREM sleep. Sleep Med. 2007;8(4):302–30.

    Article  PubMed  Google Scholar 

  • Miyamoto H, Katagiri H, Hensch T. Experience-dependent slow-wave sleep development. Nat Neurosci. 2003;6(6):553–4.

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol. 1975;38(6):1299–311.

    PubMed  CAS  Google Scholar 

  • Pieron H. Le problème physiologique du sommeil. Paris: Masson; 1913.

    Google Scholar 

  • Rector DM, Schei JL, Van Dongen HP, Belenky G, Krueger JM. Physiological markers of local sleep. Eur J Neurosci. 2009;29(9):1771–8.

    Article  PubMed  Google Scholar 

  • Rétey JV, Adam M, Honegger E, Khatami R, Luhmann UF, Jung HH, Berger W, Landolt HP. A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci USA. 2005;102(43):15676–81.

    Article  PubMed  Google Scholar 

  • Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep. 2007;30(12):1643–57.

    PubMed  Google Scholar 

  • Scammell TE, Estabrooke IV, McCarthy MT, Chemelli RM, Yanagisawa M, Miller MS, Saper CB. Hypothalamic arousal regions are activated during modafinil-induced wakefulness. J Neurosci. 2000;20(22):8620–8.

    PubMed  CAS  Google Scholar 

  • Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci. 2000;3(12):1237–8.

    Article  PubMed  CAS  Google Scholar 

  • Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000;115(2):183–204.

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull. 2003 Dec 15;62(2):143–50.

    Article  PubMed  Google Scholar 

  • Vyazovskiy V, Borbély AA, Tobler I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res. 2000;9(4):367–71.

    Article  PubMed  CAS  Google Scholar 

  • Webb WB, Agnew Jr HW. Stage 4 sleep: influence of time course variables. Science. 1971;174(4016):1354–6.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Peterfi Z, García-García F, Kirkpatrick R, Yasuda T, Krueger JM. State-specific asymmetries in EEG slow wave activity induced by local application of TNFalpha. Brain Res. 2004;1009(1–2):129–36.

    Article  PubMed  CAS  Google Scholar 

  • Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG. Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res. 2009;18(1):3–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Halász, P., Bódizs, R. (2013). Changing Views of NREM Sleep Homeostatic Regulation. In: Dynamic Structure of NREM Sleep. Springer, London. https://doi.org/10.1007/978-1-4471-4333-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4333-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4332-1

  • Online ISBN: 978-1-4471-4333-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics