Skip to main content

Wound Tissue Oximetry: A Cornerstone in Wound Care

  • Chapter
  • First Online:
Measurements in Wound Healing

Abstract

Non-healing wounds are often represented by inadequate supply of oxygen to the injured tissue. Wound tissue oxygen status needs to be understood and managed in order to secure a favorable outcome. Chronic hypoxia impairs wound healing through a number of mechanisms such as hypoxamir induction resulting in delayed wound closure, impaired collagen synthesis and failed angiogenesis. Inadequate supply of oxygen alone will stifle the healing process and therefore, wound tissue oximetry is a key parameter that must be kept in sight while managing a problem wound. TCOM is the current standard in clinical wound care but is slowly being replaced by optical and EPR-based technology platforms to develop clinical tissue oximetry tools. This chapter explains the significance of hypoxia in wound healing and the current techniques to measure tissue oxygenation status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, Kuppusamy P, Friedman A, Sen CK. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci USA. 2010;107(15):6976–81.

    Article  PubMed  CAS  Google Scholar 

  2. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763–71.

    Article  PubMed  Google Scholar 

  3. Sen CK. Wound healing essentials: let there be oxygen. Wound Repair Regen. 2009;17(1):1–18.

    Article  PubMed  Google Scholar 

  4. Sen CK, Roy S. Redox signals in wound healing. Biochim Biophys Acta. 2008;1780(11):1348–61. doi:10.1016/j.bbagen.2008.01.006.

    Article  PubMed  CAS  Google Scholar 

  5. Roy S, Khanna S, Sen CK. Redox regulation of the VEGF signaling path and tissue vascularization: hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med. 2008;44(2):180–92. doi:10.1016/j.freeradbiomed.2007.01.025.

    Article  PubMed  CAS  Google Scholar 

  6. Roy S, Khanna S, Rink C, Biswas S, Sen CK. Characterization of the acute temporal changes in excisional murine cutaneous wound inflammation by screening of the wound-edge transcriptome. Physiol Genomics. 2008;34(2):162–84. doi:10.1152/physiolgenomics.00045.2008.

    Article  PubMed  CAS  Google Scholar 

  7. Galkin A, Higgs A, Moncada S. Nitric oxide and hypoxia. Essays Biochem. 2007;43:29–42. doi:10.1042/BSE0430029.

    Article  PubMed  CAS  Google Scholar 

  8. Das KC, Dashnamoorthy R. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol. 2004;286(1):L87–97.

    Article  PubMed  CAS  Google Scholar 

  9. Gehen SC, Vitiello PF, Bambara RA, Keng PC, O’Reilly MA. Downregulation of PCNA potentiates p21-mediated growth inhibition in response to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2007;292(3):L716–24.

    Article  PubMed  CAS  Google Scholar 

  10. McGrath SA. Induction of p21WAF/CIP1 during hyperoxia. Am J Respir Cell Mol Biol. 1998;18(2):179–87.

    PubMed  CAS  Google Scholar 

  11. Rancourt RC, Keng PC, Helt CE, O’Reilly MA. The role of p21(CIP1/WAF1) in growth of epithelial cells exposed to hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2001;280(4):L617–26.

    PubMed  CAS  Google Scholar 

  12. Gerstner B, Sifringer M, Dzietko M, Schuller A, Lee J, Simons S, Obladen M, Volpe JJ, Rosenberg PA, Felderhoff-Mueser U. Estradiol attenuates hyperoxia-induced cell death in the developing white matter. Ann Neurol. 2007;61(6):562–73.

    Article  PubMed  CAS  Google Scholar 

  13. Xu D, Perez RE, Ekekezie II, Navarro A, Truog WE. Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol. 2008;294(1):L17–23.

    Article  PubMed  CAS  Google Scholar 

  14. Wang X, Wang Y, Kim HP, Choi AM, Ryter SW. Flip inhibits endothelial cell apoptosis during hyperoxia by suppressing bax. Free Radic Biol Med. 2007;42(10):1599–609.

    Article  PubMed  CAS  Google Scholar 

  15. Loiseaux-Meunier MN, Bedu M, Gentou C, Pepin D, Coudert J, Caillaud D. Oxygen toxicity: simultaneous measure of pentane and malondialdehyde in humans exposed to hyperoxia. Biomed Pharmacother. 2001;55(3):163–9.

    Article  PubMed  CAS  Google Scholar 

  16. Patel V, Chivukula IV, Roy S, Khanna S, He G, Ojha N, Mehrotra A, Dias LM, Hunt TK, Sen CK. Oxygen: from the benefits of inducing VEGF expression to managing the risk of hyperbaric stress. Antioxid Redox Signal. 2005;7(9–10):1377–87.

    Article  PubMed  CAS  Google Scholar 

  17. McCollum PT, Spence VA, Walker WF. Circumferential skin blood flow measurements in the ischaemic limb. Br J Surg. 1985;72(4):310–2.

    Article  PubMed  CAS  Google Scholar 

  18. Holstein P, Sager P, Lassen NA. Wound healing in below-knee amputations in relation to skin perfusion pressure. Acta Orthop Scand. 1979;50(1):49–58.

    Article  PubMed  CAS  Google Scholar 

  19. Mani R. Non invasive techniques for monitoring cutaneous perfusion. Practical aspects of skin blood flow. London: Churchill Livingstone; 1985.

    Google Scholar 

  20. Riva C, Ross B, Benedek GB. Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol. 1972;11(11):936–44.

    PubMed  CAS  Google Scholar 

  21. Mathieu D, Mani R. A review of the clinical significance of tissue hypoxia measurements in lower extremity wound management. Int J Low Extrem Wounds. 2007;6(4):273–83.

    Article  PubMed  Google Scholar 

  22. Serov A, Lasser T. High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor. Opt Express. 2005;13(17):6416–28.

    Article  PubMed  Google Scholar 

  23. Weingarten MS, Neidrauer M, Mateo A, Mao X, McDaniel JE, Jenkins L, Bouraee S, Zubkov L, Pourrezaei K, Papazoglou ES. Prediction of wound healing in human diabetic foot ulcers by diffuse near-infrared spectroscopy: a pilot study. Wound Repair Regen. 2010;18(2):180–5.

    Article  PubMed  Google Scholar 

  24. Neville R, Gupta S. Establishment of normative perfusion values using hyperspectral tissue oxygenation mapping technology. Vasc Dis Manage. 2009;6(6).

    Google Scholar 

  25. Owings RA, Boerma M, Wang J, Berbee M, Laderoute KR, Soderberg LS, Vural E, Jensen MH. Selective deficiency of hif-1alpha in myeloid cells influences secondary intention wound healing in mouse skin. In Vivo. 2009;23(6):879–84. doi:23/6/879[pii].

    PubMed  CAS  Google Scholar 

  26. Botusan IR, Sunkari VG, Savu O, Catrina AI, Grunler J, Lindberg S, Pereira T, Yla-Herttuala S, Poellinger L, Brismar K, Catrina SB. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci USA. 2008;105(49):19426–31. doi:10.1073/pnas.0805230105.

    Article  PubMed  CAS  Google Scholar 

  27. Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5(5):429–41.

    Article  PubMed  CAS  Google Scholar 

  28. Padberg FT, Back TL, Thompson PN, Hobson 2nd RW. Transcutaneous oxygen (TcPO2) estimates probability of healing in the ischemic extremity. J Surg Res. 1996;60(2):365–9. doi:S0022480496900591[pii].

    Article  PubMed  CAS  Google Scholar 

  29. Robson MC, Barbul A. Guidelines for the best care of chronic wounds. Wound Repair Regen. 2006;14(6):647–8. doi:10.1111/j.1524-475X.2006.00173.x.

    Article  PubMed  Google Scholar 

  30. Clark Jr LC, Wolf R, Granger D, Taylor Z. Continuous recording of blood oxygen tensions by polarography. J Appl Physiol. 1953;6(3):189–93.

    PubMed  CAS  Google Scholar 

  31. Dowd GS, Linge K, Bentley G. Measurement of transcutaneous oxygen pressure in normal and ischaemic skin. J Bone Joint Surg Br. 1983;65(1):79–83.

    PubMed  CAS  Google Scholar 

  32. Hauser CJ, Klein SR, Mehringer CM, Appel P, Shoemaker WC. Superiority of transcutaneous oximetry in noninvasive vascular diagnosis in patients with diabetes. Arch Surg. 1984;119(6):690–4.

    Article  PubMed  CAS  Google Scholar 

  33. Karanfilian RG, Lynch TG, Zirul VT, Padberg FT, Jamil Z, Hobson 2nd RW. The value of laser Doppler velocimetry and transcutaneous oxygen tension determination in predicting healing of ischemic forefoot ulcerations and amputations in diabetic and nondiabetic patients. J Vasc Surg. 1986;4(5):511–6.

    PubMed  CAS  Google Scholar 

  34. Pecoraro RE, Ahroni JH, Boyko EJ, Stensel VL. Chronology and determinants of tissue repair in diabetic lower-extremity ulcers. Diabetes. 1991;40(10):1305–13.

    Article  PubMed  CAS  Google Scholar 

  35. Kalani M, Brismar K, Fagrell B, Ostergren J, Jorneskog G. Transcutaneous oxygen tension and toe blood pressure as predictors for outcome of diabetic foot ulcers. Diabetes Care. 1999;22(1):147–51.

    Article  PubMed  CAS  Google Scholar 

  36. Depairon M, Krahenbuhl B, Vaucher J. determination of the amputation level by transcutaneous PO2 measurement and distal arterial systolic pressure. J Mal Vasc. 1986;11(3):229–34.

    PubMed  CAS  Google Scholar 

  37. Bacharach JM, Rooke TW, Osmundson PJ, Gloviczki P. Predictive value of transcutaneous oxygen pressure and amputation success by use of supine and elevation measurements. J Vasc Surg. 1992;15(3):558–63.

    Article  PubMed  CAS  Google Scholar 

  38. Slagsvold CE, Kvernebo K, Slungaard U, Kroese AJ. Pre- and postischemic transcutaneous oxygen tension measurements and the determination of amputation level in ischemic limbs. Acta Chir Scand. 1989;155(10):527–31.

    PubMed  CAS  Google Scholar 

  39. Wutschert R, Bounameaux H. Determination of amputation level in ischemic limbs. Reappraisal of the measurement of TcPO2. Diabetes Care. 1997;20(8):1315–8.

    Article  PubMed  CAS  Google Scholar 

  40. Poredos P, Rakovec S, Guzic-Salobir B. Determination of amputation level in ischaemic limbs using TcPO2 measurement. Vasa. 2005;34(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  41. Franzeck UK, Talke P, Bernstein EF, Golbranson FL, Fronek A. Transcutaneous PO2 measurements in health and peripheral arterial occlusive disease. Surgery. 1982;91(2):156–63.

    PubMed  CAS  Google Scholar 

  42. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45(Suppl S):S5–67.

    Article  PubMed  Google Scholar 

  43. Salman M, Glantzounis GK, Yang W, Myint F, Hamilton G, Seifalian AM. Measurement of critical lower limb tissue hypoxia by coupling chemical and optical techniques. Clin Sci (Lond). 2005;108(2):159–65.

    Article  CAS  Google Scholar 

  44. Gordillo GM, Schlanger R, Wallace WA, Bergdall V, Bartlett R, Sen CK. Protocols for topical and systemic oxygen treatments in wound healing. Methods Enzymol. 2004;381:575–85.

    Article  PubMed  Google Scholar 

  45. Colacicchi S, Ferrari M, Sotgiu A. In vivo electron paramagnetic resonance spectroscopy/imaging: first experiences, problems, and perspectives. Int J Biochem. 1992;24(2):205–14.

    Article  PubMed  CAS  Google Scholar 

  46. Berliner JL, Fujii H. Magnetic resonance imaging of biological specimens by electron paramagnetic resonance of nitroxide spin labels. Science. 1985;227(4686):517–9.

    Article  PubMed  CAS  Google Scholar 

  47. Berliner LJ, Fujii H, Wan XM, Lukiewicz SJ. Feasibility study of imaging a living murine tumor by electron paramagnetic resonance. Magn Reson Med. 1987;4(4):380–4.

    Article  PubMed  CAS  Google Scholar 

  48. Glockner JF, Swartz HM. In vivo EPR oximetry using two novel probes: fusinite and lithium phthalocyanine. Adv Exp Med Biol. 1992;317:229–34.

    Article  PubMed  CAS  Google Scholar 

  49. Liu KJ, Gast P, Moussavi M, Norby SW, Vahidi N, Walczak T, Wu M, Swartz HM. Lithium phthalocyanine: a probe for electron paramagnetic resonance oximetry in viable biological systems. Proc Natl Acad Sci USA. 1993;90(12):5438–42.

    Article  PubMed  CAS  Google Scholar 

  50. Zweier JL, Chzhan M, Ewert U, Schneider G, Kuppusamy P. Development of a highly sensitive probe for measuring oxygen in biological tissues. J Magn Reson B. 1994;105(1):52–7.

    Article  PubMed  CAS  Google Scholar 

  51. Halpern HJ, Yu C, Peric M, Barth E, Grdina DJ, Teicher BA. Oxymetry deep in tissues with low-frequency electron paramagnetic resonance. Proc Natl Acad Sci USA. 1994;91(26):13047–51.

    Article  PubMed  CAS  Google Scholar 

  52. Swartz HM, Glockner JF. Measurements of oxygen by EPRI and EPRS. Boca Raton: CRC Press, Inc.; 1991.

    Google Scholar 

  53. Kuppusamy P, Chzhan M, Samouilov A, Wang P, Zweier JL. Mapping the spin-density and lineshape distribution of free radicals using 4D spectral-spatial EPR imaging. J Magn Reson B. 1995;107(2):116–25.

    Article  PubMed  CAS  Google Scholar 

  54. Swartz HM, Clarkson RB. The measurement of oxygen in vivo using EPR techniques. Phys Med Biol. 1998;43(7):1957–75.

    Article  PubMed  CAS  Google Scholar 

  55. Swartz HM, Khan N, Buckey J, Comi R, Gould L, Grinberg O, Hartford A, Hopf H, Hou H, Hug E, Iwasaki A, Lesniewski P, Salikhov I, Walczak T. Clinical applications of EPR: overview and perspectives. NMR Biomed. 2004;17(5):335–51. doi:10.1002/nbm.911.

    Article  PubMed  CAS  Google Scholar 

  56. Salikhov I, Walczak T, Lesniewski P, Khan N, Iwasaki A, Comi R, Buckey J, Swartz HM. EPR spectrometer for clinical applications. Magn Reson Med. 2005;54(5):1317–20. doi:10.1002/mrm.20689.

    Article  PubMed  CAS  Google Scholar 

  57. Kuppusamy P, Chzhan M, Vij K, Shteynbuk M, Lefer DJ, Giannella E, Zweier JL. Three-dimensional spectral-spatial EPR imaging of free radicals in the heart: a technique for imaging tissue metabolism and oxygenation. Proc Natl Acad Sci USA. 1994;91(8):3388–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants GM069589 and GM077185 and HL073087 to CK Sen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan K. Sen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Banerjee, J., Sen, C.K. (2012). Wound Tissue Oximetry: A Cornerstone in Wound Care. In: Mani, R., Romanelli, M., Shukla, V. (eds) Measurements in Wound Healing. Springer, London. https://doi.org/10.1007/978-1-4471-2987-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2987-5_12

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2986-8

  • Online ISBN: 978-1-4471-2987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics