Skip to main content

Lung Cancer (Exposure Assessment, Pathology, and Epidemiology)

  • Chapter
  • First Online:
Occupational Cancers

Abstract

Lung cancer is the most common malignancy worldwide and the most common cause of a cancer-related death. Tobacco smoking is the most important cause of lung cancer in most populations although occupational exposures cause an increased risk of lung cancer more than any other malignancy. This chapter will review the histomorphology and classification of carcinoma of the lung and the evidence for specific occupational exposures reported to cause lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boffetta P, Autier P, Boniol M, et al. An estimate of cancers attributable to occupational exposures in France. J Occup Environ Med. 2010;52:399–406.

    CAS  PubMed  Google Scholar 

  2. Travis WD, World Health Organization, International Agency for Research on Cancer, International Association for the Study of Lung Cancer, International Academy of Pathology. Pathology and genetics of tumours of the lung, pleura, thymus, and heart. Lyon: IARC Press; 2004.

    Google Scholar 

  3. Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  4. Travis WD, Brambilla E, Noguchi M, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    PubMed  Google Scholar 

  5. Moran C. PATH IQ ImmunoQuery 2.8. https://immunoquery.pathiq.com. Accessed 18 May 2011.

  6. Neoplasia. In: Kumar V, Abbas AK, Fausto N, editors. Robbins and Cotran pathologic basis of disease. 7th ed. Philadelphia: Elsevier Saunders; 2005. p. 369–71.

    Google Scholar 

  7. Flieder D, Hammar S. Common non-small-cell carcinomas and their variants. In: Tomashefski JF, Dail DH, editors. Dail and Hammar’s pulmonary pathology, vol. 2. 3rd ed. New York: Springer; 2008. p. 216–307.

    Google Scholar 

  8. Neoplasms of the lungs, airways, and pleura. In: Hansell DM, Lynch DA, McAdams HP, Bankier AA, editors. Imaging of diseases of the chest. 5th ed. Philadelphia: Elsevier Mosby; 2010. p. 787–880.

    Google Scholar 

  9. International Agency for Research on Cancer. A review of human carcinogens, IARC monographs on the evaluation of carcinogenic risks to humans, vol 100 A–F. Lyon: IARC; 2012.

    Google Scholar 

  10. Rushton L, Bagga S, Bevan R, et al. Occupation and cancer in Britain. Br J Cancer. 2010;102:1428–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Rosman T. Arsenic. In: Rom WN, Markowitz S, editors. Environmental and occupational medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 1006–82.

    Google Scholar 

  12. Lee-Feldstein A. Cumulative exposure to arsenic and its relationship to respiratory cancer among copper smelter employees. J Occup Med. 1986;28:296–302.

    CAS  PubMed  Google Scholar 

  13. Enterline PE, Marsh GM, Esmen NA, Henderson VL, Callahan CM, Paik M. Some effects of cigarette smoking, arsenic, and SO2 on mortality among US copper smelter workers. J Occup Med. 1987;29:831–8.

    CAS  PubMed  Google Scholar 

  14. Jarup L, Pershagen G, Wall S. Cumulative arsenic exposure and lung cancer in smelter workers: a dose-response study. Am J Ind Med. 1989;15:31–41.

    CAS  PubMed  Google Scholar 

  15. Lubin JH, Moore LE, Fraumeni Jr JF, Cantor KP. Respiratory cancer and inhaled inorganic arsenic in copper smelters workers: a linear relationship with cumulative exposure that increases with concentration. Environ Health Perspect. 2008;116:1661–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Enterline PE, Day R, Marsh GM. Cancers related to exposure to arsenic at a copper smelter. Occup Environ Med. 1995;52:28–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Lundstrom NG, Englyst V, Gerhardsson L, Jin T, Nordberg G. Lung cancer development in primary smelter workers: a nested case-referent study. J Occup Environ Med. 2006;48:376–80.

    PubMed  Google Scholar 

  18. Lynch KM, Smith WA. Pulmonary asbestosis: carcinoma of the lung in asbestos-silicosis. Am J Cancer. 1935;24:56.

    Google Scholar 

  19. Doll R. Mortality from lung cancer in asbestos workers. Br J Ind Med. 1955;12:81–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Selikoff IJ, Hammond EC, Churg J. Asbestos exposure, smoking, and neoplasia. JAMA. 1968;204:106–12.

    CAS  PubMed  Google Scholar 

  21. Gibbs A, Attanoos RL, Churg A, Weill H. The “Helsinki criteria” for attribution of lung cancer to asbestos exposure: how robust are the criteria? Arch Pathol Lab Med. 2007;131:181–3.

    CAS  PubMed  Google Scholar 

  22. Roggli VL, Hammar SP, Maddox JC, Henderson DW. Re: The “Helsinki Criteria” for attribution of lung cancer to asbestos exposure: how robust are the criteria? Arch Pathol Lab Med. 2008;132:1386–7; author reply 1387.

    PubMed  Google Scholar 

  23. Henderson DW, Klerk NH, Hammar SP. Asbestos and lung cancer: is it attributable to asbestosis or to asbestos fiber burden? In: Corrin B, editor. Pathology of lung tumors. New York: Churchill Livingstone; 1997. p. 83–118.

    Google Scholar 

  24. Henderson DW, Rodelsperger K, Woitowitz HJ, Leigh J. After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997–2004. Pathology. 2004;36:517–50.

    CAS  PubMed  Google Scholar 

  25. Churg A. Asbestos, asbestosis, and lung cancer. Mod Pathol. 1993;6:509–11.

    CAS  PubMed  Google Scholar 

  26. Roggli VL, Hammar SP, Pratt PC, et al. Does asbestos or asbestosis cause carcinoma of the lung? Am J Ind Med. 1994;26:835–8.

    CAS  PubMed  Google Scholar 

  27. Hillerdal G. Pleural plaques and risk for bronchial carcinoma and mesothelioma. A prospective study. Chest. 1994;105:144–50.

    CAS  PubMed  Google Scholar 

  28. Hammond EC, Selikoff IJ, Seidman H. Asbestos exposure, cigarette smoking and death rates. Ann N Y Acad Sci. 1979;330:473–90.

    CAS  PubMed  Google Scholar 

  29. Lee PN. Relation between exposure to asbestos and smoking jointly and the risk of lung cancer. Occup Environ Med. 2001;58:145–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Liddell FD. The interaction of asbestos and smoking in lung cancer. Ann Occup Hyg. 2001;45:341–56.

    CAS  PubMed  Google Scholar 

  31. Liddell FD. Joint action of smoking and asbestos exposure on lung cancer. Occup Environ Med. 2002;59:494–5; author reply 495–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Henderson DW, Rantanen J, Bernhart S, et al. Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. Scand J Work Environ Health. 1997;23:311–6.

    Google Scholar 

  33. Roggli VL, Gibbs AR, Attanoos R, et al. Pathology of asbestosis- an update of the diagnostic criteria: report of the asbestosis committee of the College of American Pathologists and Pulmonary Pathology Society. Arch Pathol Lab Med. 2010;134:462–80.

    PubMed  Google Scholar 

  34. International Labour Office. Guidelines for the use of the ILO international classification of radiographs of pneumoconioses. Geneva: International Labour Office; 2002.

    Google Scholar 

  35. Ghio AJ, Roggli VL. Diagnosis and initial management of nonmalignant diseases related to asbestos. Am J Respir Crit Care Med. 2005;171:527; author reply 528–30.

    PubMed  Google Scholar 

  36. Churg A. Neoplastic asbestos-induced disease. In: Churg A, Green FHY, editors. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins; 1998. p. 339–91.

    Google Scholar 

  37. Keil CB, Simmons CE, Anthony TR. Mathematical models for estimating occupational exposure to chemicals. 2nd ed. Fairfax: AIHA Press; 2009.

    Google Scholar 

  38. Hendrick DJ. Occupational disorders of the lung: recognition, management and prevention. London: W. B. Saunders; 2002.

    Google Scholar 

  39. Browne K. A threshold for asbestos related lung cancer. Br J Ind Med. 1986;43:556–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Churg A. Nonneoplastic disease caused by asbestos. In: Churg A, Green FHY, editors. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins; 1998. p. 277–338.

    Google Scholar 

  41. Churg A, Warnock ML, Green N. Analysis of the cores of ferruginous (asbestos) bodies from the general population. II. True asbestos bodies and pseudoasbestos bodies. Lab Invest. 1979;40:31–8.

    CAS  PubMed  Google Scholar 

  42. Roggli VL, Sanders LL. Asbestos content of lung tissue and carcinoma of the lung: a clinicopathologic correlation and mineral fiber analysis of 234 cases. Ann Occup Hyg. 2000;44:109–17.

    CAS  PubMed  Google Scholar 

  43. Roggli VL. Quantitative and analytical studies in the diagnosis of mesothelioma. Semin Diagn Pathol. 1992;9:162–8.

    CAS  PubMed  Google Scholar 

  44. Roggli VL, Sharma A. Analysis of tissue mineral fiber content. In: Roggli VL, Oury TD, Sporn TA, editors. Pathology of asbestos-associated diseases. 2nd ed. New York: Springer; 2004. p. 309–54.

    Google Scholar 

  45. Maier LA, Gunn C, Newman LS. Beryllium disease. In: Rom WN, Markowitz S, editors. Environmental and occupational medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 1021–38.

    Google Scholar 

  46. Steenland K, Ward E. Lung cancer incidence among patients with beryllium disease: a cohort mortality study. J Natl Cancer Inst. 1991;83:1380–5.

    CAS  PubMed  Google Scholar 

  47. Ward E, Okun A, Ruder A, Fingerhut M, Steenland K. A mortality study of workers at seven beryllium processing plants. Am J Ind Med. 1992;22:885–904.

    CAS  PubMed  Google Scholar 

  48. Beryllium Industry Scientific Advisory Committee. Is beryllium carcinogenic in humans? J Occup Environ Med. 1997;39:205–8.

    Google Scholar 

  49. Sanderson WT, Ward EM, Steenland K, Petersen MR. Lung cancer case-control study of beryllium workers. Am J Ind Med. 2001;39:133–44.

    CAS  PubMed  Google Scholar 

  50. Schubauer-Berigan MK, Couch JR, Petersen MR, Carreon T, Jin Y, Deddens JA. Cohort mortality study of workers at seven beryllium processing plants: update and associations with cumulative and maximum exposure. Occup Environ Med. 2011;68:345–53.

    CAS  PubMed  Google Scholar 

  51. Boffetta P, Fryzek JP, Mandel JS. Occupational exposure to beryllium and cancer risk: a review of the epidemiologic evidence. Crit Rev Toxicol. 2012;42:107–18.

    CAS  PubMed  Google Scholar 

  52. Lison D, Verougstraete V. Cadmium. In: Rom WN, Markowitz S, editors. Environmental and occupational medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 999–1004.

    Google Scholar 

  53. International Agency for Research on Cancer. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC monographs on the evaluation of carcinogenic risks to humans. Lyon: IARC, WHO; 1993.

    Google Scholar 

  54. International Agency for Research on Cancer. Overall evaluations of carcinogenicity: an updating of IARC monographs. IARC monographs on the evaluation of carcinogenic risks to humans. Supplement 7. Lyon: IARC; 1987.

    Google Scholar 

  55. Lemen RA, Lee JS, Wagoner JK, Blejer HP. Cancer mortality among cadmium production workers. Ann N Y Acad Sci. 1976;271:273–9.

    CAS  PubMed  Google Scholar 

  56. Thun MJ, Schnorr TM, Smith AB, Halperin WE, Lemen RA. Mortality among a cohort of U.S. cadmium production workers–an update. J Natl Cancer Inst. 1985;74:325–33.

    CAS  PubMed  Google Scholar 

  57. Stayner L, Smith R, Thun M, Schnorr T, Lemen R. A dose-response analysis and quantitative assessment of lung cancer risk and occupational cadmium exposure. Ann Epidemiol. 1992;2:177–94.

    CAS  PubMed  Google Scholar 

  58. Lamm SH, Parkinson M, Anderson M, Taylor W. Determinants of lung cancer risk among cadmium-exposed workers. Ann Epidemiol. 1992;2:195–211.

    CAS  PubMed  Google Scholar 

  59. Sorahan T, Lancashire RJ. Lung cancer mortality in a cohort of workers employed at a cadmium recovery plant in the United States: an analysis with detailed job histories. Occup Environ Med. 1997;54:194–201.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Sorahan T. Lung cancer mortality in arsenic-exposed workers from a cadmium recovery plant. Occup Med (Lond). 2009;59:264–6.

    Google Scholar 

  61. Sorahan T, Lancashire R. Lung cancer findings from the NIOSH study of United States cadmium recovery workers: a cautionary note. Occup Environ Med. 1994;51:139–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Doll R. Is cadmium a human carcinogen? Ann Epidemiol. 1992;2:335–7.

    CAS  PubMed  Google Scholar 

  63. Kazantzis G, Armstrong BG. A mortality study of cadmium workers in the United Kingdom. Scand J Work Environ Health. 1982;8 Suppl 1:157–60.

    PubMed  Google Scholar 

  64. Armstrong BG, Kazantzis G. The mortality of cadmium workers. Lancet. 1983;1:1425–7.

    CAS  PubMed  Google Scholar 

  65. Kazantzis G, Lam TH, Sullivan KR. Mortality of cadmium-exposed workers. A five-year update. Scand J Work Environ Health. 1988;14(4):220–3.

    CAS  PubMed  Google Scholar 

  66. Ades AE, Kazantzis G. Lung cancer in a non-ferrous smelter: the role of cadmium. Br J Ind Med. 1988;45:435–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Elinder CG, Kjellstrom T, Hogstedt C, Anderson K, Spang G. Cancer mortality of cadmium workers. Br J Ind Med. 1985;42:651–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Sorahan T, Esmen NA. Lung cancer mortality in UK nickel-cadmium battery workers, 1947–2000. Occup Environ Med. 2004;61:108–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Kazi TG, Memon AR, Afridi HI, et al. Determination of cadmium in whole blood and scalp hair samples of Pakistani male lung cancer patients by electrothermal atomic absorption spectrometer. Sci Total Environ. 2008;389:270–6.

    CAS  PubMed  Google Scholar 

  70. IARC monographs on the evaluation of carcinogenic risks to humans. Some aromatic amines, hydrazine and related substances, N-nitroso compounds and miscellaneous alkylating agents. Lyon: IARC, WHO; 1974.

    Google Scholar 

  71. National Toxicology Program. Bis(Chloromethyl) ether and technical-grade chloromethyl methyl ether. Rep Carcinog. 2004;11:III56–7.

    Google Scholar 

  72. Figueroa WG, Raszkowski R, Weiss W. Lung cancer in chloromethyl methyl ether workers. N Engl J Med. 1973;288:1096–7.

    CAS  PubMed  Google Scholar 

  73. Weiss W, Boucot KR. The respiratory effects of chloromethyl methyl ether. JAMA. 1975;234:1139–42.

    CAS  PubMed  Google Scholar 

  74. Weiss W. Chloromethyl ethers, cigarettes, cough and cancer. J Occup Med. 1976;18:194–9.

    CAS  PubMed  Google Scholar 

  75. Weiss W, Figueroa WG. The characteristics of lung cancer due to chloromethyl ethers. J Occup Med. 1976;18:623–7.

    CAS  PubMed  Google Scholar 

  76. Weiss W, Moser RL, Auerbach O. Lung cancer in chloromethyl ether workers. Am Rev Respir Dis. 1979;120:1031–7.

    CAS  PubMed  Google Scholar 

  77. Weiss W. The cigarette factor in lung cancer due to chloromethyl ethers. J Occup Med. 1980;22:527–9.

    CAS  PubMed  Google Scholar 

  78. Weiss W. Epidemic curve of respiratory cancer due to chloromethyl ethers. J Natl Cancer Inst. 1982;69:1265–70.

    CAS  PubMed  Google Scholar 

  79. Weiss W. Respiratory cancer and chloromethyl ethers. Environ Res. 1991;54:93–7.

    CAS  PubMed  Google Scholar 

  80. Weiss W, Nash D. An epidemic of lung cancer due to chloromethyl ethers. 30 years of observation. J Occup Environ Med. 1997;39:1003–9.

    CAS  PubMed  Google Scholar 

  81. DeFonso LR, Kelton Jr SC. Lung cancer following exposure to chloromethyl methyl ether. An epidemiological study. Arch Environ Health. 1976;31:125–30.

    CAS  PubMed  Google Scholar 

  82. Maher KV, DeFonso LR. Respiratory cancer among chloromethyl ether workers. J Natl Cancer Inst. 1987;78:839–43.

    CAS  PubMed  Google Scholar 

  83. McCallum RI, Woolley V, Petrie A. Lung cancer associated with chloromethyl methyl ether manufacture: an investigation at two factories in the United Kingdom. Br J Ind Med. 1983;40:384–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. IARC monographs on the evaluation of carcinogenic risks to humans. Chromium, nickel and welding, vol. 49. Lyon: IARC, WHO; 1990.

    Google Scholar 

  85. Cohen M, Costa M. Chromium compounds. In: Rom WN, Markowitz S, editors. Environmental and occupational medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 1047–61.

    Google Scholar 

  86. Langard S. One hundred years of chromium and cancer: a review of epidemiological evidence and selected case reports. Am J Ind Med. 1990;17:189–215.

    CAS  PubMed  Google Scholar 

  87. Sorahan T, Burges DC, Hamilton L, Harrington JM. Lung cancer mortality in nickel/chromium platers, 1946–95. Occup Environ Med. 1998;55:236–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sorahan T, Harrington JM. Lung cancer in Yorkshire chrome platers, 1972–97. Occup Environ Med. 2000;57:385–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Hayes RB, Lilienfeld AM, Snell LM. Mortality in chromium chemical production workers: a prospective study. Int J Epidemiol. 1979;8:365–74.

    CAS  PubMed  Google Scholar 

  90. Gibb HJ, Lees PS, Pinsky PF, Rooney BC. Lung cancer among workers in chromium chemical production. Am J Ind Med. 2000;38:115–26.

    CAS  PubMed  Google Scholar 

  91. Park RM, Bena JF, Stayner LT, Smith RJ, Gibb HJ, Lees PS. Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal. 2004;24:1099–108.

    PubMed  Google Scholar 

  92. Occupational Safety and Health Administration. Occupational exposure to hexavalent chromium. Final rule. Fed Regist. 2006;71:10099–385.

    Google Scholar 

  93. Abe S, Ohsaki Y, Kimura K, Tsuneta Y, Mikami H, Murao M. Chromate lung cancer with special reference to its cell type and relation to the manufacturing process. Cancer. 1982;49:783–7.

    CAS  PubMed  Google Scholar 

  94. Sporn TA, Roggli VL. Pneumoconioses, mineral and vegetable. In: Tomashefski JF, Cagle PT, Farver CF, Fraire AE, editors. Dail and Hammar’s pulmonary pathology, vol. 2. 3rd ed. New York: Springer; 2008. p. 911–49.

    Google Scholar 

  95. Green FH, Vallyathan V. Coal workers’ pneumoconiosis and pneumoconiosis due to other carbonaceous dusts. In: Churg A, Green FHY, editors. Pathology of occupational lung disease. 1st ed. New York: Igaku-Shoin Medical Publishers; 1988. p. 129–207.

    Google Scholar 

  96. Kennaway EL, Kennaway NM. The incidence of cancer of the lung in coal miners in England and Wales. Br J Cancer. 1953;7:10–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Goldman KP. Mortality of coal-miners from carcinoma of the lung. Br J Ind Med. 1965;22:72–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Stocks P. On the death rates from cancer of the stomach and respiratory diseases in 1949–53 among coal miners and other male residents in counties of England and Wales. Br J Cancer. 1962;16:592–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Liddell FD. Mortality of British coal miners in 1961. Br J Ind Med. 1973;30:15–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Attfield MD, Kuempel ED. Mortality among U.S. underground coal miners: a 23-year follow-up. Am J Ind Med. 2008;51:231–45.

    CAS  PubMed  Google Scholar 

  101. Enterline PE. A review of mortality data for American coal miners. Ann N Y Acad Sci. 1972;200:260–72.

    CAS  PubMed  Google Scholar 

  102. Rockette HE. Cause specific mortality of coal miners. J Occup Med. 1977;19:795–801.

    CAS  PubMed  Google Scholar 

  103. Scarano D, Fadali AM, Lemole GM. Carcinoma of the lung and anthracosilicosis. Chest. 1972;62:251–4.

    CAS  PubMed  Google Scholar 

  104. Ames RG, Amandus H, Attfield M, Green FY, Vallyathan V. Does coal mine dust present a risk for lung cancer? A case-control study of U.S. coal miners. Arch Environ Health. 1983;38:331–3.

    CAS  PubMed  Google Scholar 

  105. Isidro Montes I, Rego Fernandez G, Reguero J, et al. Respiratory disease in a cohort of 2,579 coal miners followed up over a 20-year period. Chest. 2004;126:622–9.

    PubMed  Google Scholar 

  106. Lewne M, Plato N, Gustavsson P. Exposure to particles, elemental carbon and nitrogen dioxide in workers exposed to motor exhaust. Ann Occup Hyg. 2007;51:693–701.

    CAS  PubMed  Google Scholar 

  107. NTP. Diesel exhaust particulates. In: Department of Health and Human Services PHS, National Toxicology Program, editor. Report on carcinogens. Research Triangle Park: Department of Health and Human Services PHS; 2011.

    Google Scholar 

  108. Ris C. U.S. EPA health assessment for diesel engine exhaust: a review. Inhal Toxicol. 2007;19 Suppl 1:229–39.

    CAS  PubMed  Google Scholar 

  109. International Agency for Research on Cancer. Diesel and gasoline engine exhausts and some nitroarenes, IARC monographs on the evaluation of carcinogenic risks to humans, vol. 105. Lyon: IARC; 2013.

    Google Scholar 

  110. Attfield MD, Schleiff PL, Lubin JH, et al. The Diesel Exhaust in Miners study: a cohort mortality study with emphasis on lung cancer. J Natl Cancer Inst. 2012;104:869–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Silverman DT, Samanic CM, Lubin JH, et al. The Diesel Exhaust in Miners study: a nested case-control study of lung cancer and diesel exhaust. J Natl Cancer Inst. 2012;104:855–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Gamble J. Lung cancer and diesel exhaust: a critical review of the occupational epidemiology literature. Crit Rev Toxicol. 2010;40:189–244.

    CAS  PubMed  Google Scholar 

  113. Report of the International Committee on Nickel carcinogenesis in man. Doll R, Chair. Scand J Work Environ Health. 1990;16(1 Spec No):1–82.

    Google Scholar 

  114. Anttila A, Pukkala E, Aitio A, Rantanen T, Karjalainen S. Update of cancer incidence among workers at a copper/nickel smelter and nickel refinery. Int Arch Occup Environ Health. 1998;71:245–50.

    CAS  PubMed  Google Scholar 

  115. Andersen A, Berge SR, Engeland A, Norseth T. Exposure to nickel compounds and smoking in relation to incidence of lung and nasal cancer among nickel refinery workers. Occup Environ Med. 1996;53:708–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Grimsrud TK, Berge SR, Haldorsen T, Andersen A. Can lung cancer risk among nickel refinery workers be explained by occupational exposures other than nickel? Epidemiology. 2005;16:146–54.

    PubMed  Google Scholar 

  117. Cohen M, Klein C, Costa M. Nickel compounds. In: Rom WN, Markowitz S, editors. Environmental and occupational medicine. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2007. p. 1063–82.

    Google Scholar 

  118. Edelman DA, Roggli VL. The accumulation of nickel in human lungs. Environ Health Perspect. 1989;81:221–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. International Agency for Research on Cancer. Occupational exposure as a painter. In: Chemical agents and related occupations. IARC monographs on the evaluation of carcinogenic risks to humans, vol. 100 F. Lyon: IARC; 2012. p. 509–40.

    Google Scholar 

  120. Bachand A, Mundt KA, Mundt DJ, Carlton LE. Meta-analyses of occupational exposure as a painter and lung and bladder cancer morbidity and mortality 1950–2008. Crit Rev Toxicol. 2010;40:101–25.

    PubMed  Google Scholar 

  121. Guha N, Steenland NK, Merletti F, Altieri A, Cogliano V, Straif K. Bladder cancer risk in painters: a meta-analysis. Occup Environ Med. 2010;67:568–73.

    PubMed  Google Scholar 

  122. International Agency for Research on Cancer. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, IARC monographs on the evaluation of carcinogenic risks to humans, vol. 92. Lyon: IARC; 2010.

    Google Scholar 

  123. Bosetti C, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol. 2007;18:431–46.

    CAS  PubMed  Google Scholar 

  124. Office of Radiation and Indoor Air. EPA assessment of risks from radon in homes. Washington, DC: United States Environmental Protection Agency; 2003.

    Google Scholar 

  125. NTP. Radon. In: Department of Health and Human Services PHS, National Toxicology Program, editors. Report on carcinogens, 12th edn. Research Triangle Park: Department of Health and Human Services PHS; 2011.

    Google Scholar 

  126. IARC monographs on the evaluation of carcinogenic risks to humans. Ionizing radiation, part 2: some internally deposited radionuclides, vol. 78. Lyon: IARC, WHO; 2001.

    Google Scholar 

  127. Lubin JH, Boice Jr JD, Edling C, et al. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J Natl Cancer Inst. 1995;87:817–27.

    CAS  PubMed  Google Scholar 

  128. Lubin JH, Boice Jr JD, Edling C, et al. Radon-exposed underground miners and inverse dose-rate (protraction enhancement) effects. Health Phys. 1995;69:494–500.

    CAS  PubMed  Google Scholar 

  129. Kreuzer M, Grosche B, Schnelzer M, et al. Radon and risk of death from cancer and cardiovascular diseases in the German uranium miners cohort study: Follow-up 1946–2003. Radiat Environ Biophys. 2010;49:177–85.

    Google Scholar 

  130. Schnelzer M, Hammer GP, Kreuzer M, Tschense A, Grosche B. Accounting for smoking in the radon-related lung cancer risk among German uranium miners: results of a nested case-control study. Health Phys. 2010;98:20–8.

    CAS  PubMed  Google Scholar 

  131. Bruske-Hohlfeld I, Rosario AS, Wolke G, et al. Lung cancer risk among former uranium miners of the WISMUT Company in Germany. Health Phys. 2006;90:208–16.

    PubMed  Google Scholar 

  132. Leuraud K, Schnelzer M, Tomasek L, et al. Radon, smoking and lung cancer risk: results of a joint analysis of three European case-control studies among uranium miners. Radiat Res. 2011;176(3):375.

    CAS  PubMed  Google Scholar 

  133. Gibbs AR. Occupational lung disease. In: Haselton PS, editor. Spencer’s pathology of the lung. 5th ed. New York: McGraw-Hill; 1996. p. 461–506.

    Google Scholar 

  134. American Thoracic Society Committee of the Scientific Assembly on Environmental and Occupational Health. Adverse effects of crystalline silica exposure. Am J Respir Crit Care Med. 1997;155:761–8.

    Google Scholar 

  135. Silicosis and Silicate Disease Committee. Diseases associated with exposure to silica and nonfibrous silicate minerals. Arch Pathol Lab Med. 1988;112:673–720.

    Google Scholar 

  136. Wilbourn J, Partensky C, Morgan WG. IARC evaluates printing processes and printing inks, carbon black and some nitro compounds. Scand J Work Environ Health. 1996;22:154–6.

    CAS  PubMed  Google Scholar 

  137. Craighead JE. Do silica and asbestos cause lung cancer? Arch Pathol Lab Med. 1992;116:16–20.

    CAS  PubMed  Google Scholar 

  138. Hessel PA, Gamble JF, Gee JB, et al. Silica, silicosis, and lung cancer: a response to a recent working group report. J Occup Environ Med. 2000;42:704–20.

    CAS  PubMed  Google Scholar 

  139. Gamble JF. Crystalline silica and lung cancer: a critical review of the occupational epidemiology literature of exposure-response studies testing this hypothesis. Crit Rev Toxicol. 2011;41:404–65.

    CAS  PubMed  Google Scholar 

  140. Steenland K, Beaumont J. A proportionate mortality study of granite cutters. Am J Ind Med. 1986;9:189–201.

    CAS  PubMed  Google Scholar 

  141. Merlo F, Costantini M, Reggiardo G, Ceppi M, Puntoni R. Lung cancer risk among refractory brick workers exposed to crystalline silica: a retrospective cohort study. Epidemiology. 1991;2:299–305.

    CAS  PubMed  Google Scholar 

  142. Merlo DF, Garattini S, Gelatti U, et al. A mortality cohort study among workers in a graphite electrode production plant in Italy. Occup Environ Med. 2004;61:e9.

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Ulm K, Waschulzik B, Ehnes H, et al. Silica dust and lung cancer in the German stone, quarrying, and ceramics industries: results of a case-control study. Thorax. 1999;54:347–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Steenland K, Sanderson W. Lung cancer among industrial sand workers exposed to crystalline silica. Am J Epidemiol. 2001;153:695–703.

    CAS  PubMed  Google Scholar 

  145. Cowie RL. The epidemiology of tuberculosis in gold miners with silicosis. Am J Respir Crit Care Med. 1994;150:1460–2.

    CAS  PubMed  Google Scholar 

  146. Bang KM, Weissman DN, Wood JM, Attfield MD. Tuberculosis mortality by industry in the United States, 1990–1999. Int J Tuberc Lung Dis. 2005;9:437–42.

    CAS  PubMed  Google Scholar 

  147. Kleinerman J. The pathology of some familiar pneumoconioses. Semin Roentgenol. 1967;2:244–64.

    Google Scholar 

  148. Kleinerman J, Green F, Laquer WM. Pathology standards for coal workers’ pneumoconiosis. Report of the Pneumoconiosis Committee of the College of American Pathologists to the National Institute for Occupational Safety and Health. Arch Pathol Lab Med. 1979;103:375–432.

    Google Scholar 

  149. Honma K, Abraham JL, Chiyotani K, et al. Proposed criteria for mixed-dust pneumoconiosis: definition, descriptions, and guidelines for pathologic diagnosis and clinical correlation. Human Pathol. 2004;35:1515–23.

    CAS  Google Scholar 

  150. National Research Council (U.S.), Committee on Passive Smoking. Exposure to environmental tobacco smoke and lung cancer. Environmental tobacco smoke: measuring exposures and assessing health effects. Washington, D.C.: National Academy Press; 1986. p. 223–49.

    Google Scholar 

  151. Jinot J, Bayard SP, United States Environmental Protection Agency, Office of Health and Environmental Assessment, United States Environmental Protection Agency Indoor Air Division. Respiratory health effects of passive smoking: lung cancer and other disorders. Washington, DC: Office of Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency; 1992.

    Google Scholar 

  152. IARC monographs on the evaluation of carcinogenic risks to humans. Tobacco smoke and involuntary smoking. Lyon: IARC, WHO; 2004.

    Google Scholar 

  153. Brownson RC, Alavanja MC, Hock ET, Loy TS. Passive smoking and lung cancer in nonsmoking women. Am J Public Health. 1992;82:1525–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Stockwell HG, Goldman AL, Lyman GH, et al. Environmental tobacco smoke and lung cancer risk in nonsmoking women. J Natl Cancer Inst. 1992;84:1417–22.

    CAS  PubMed  Google Scholar 

  155. Fontham ET, Correa P, Reynolds P, et al. Environmental tobacco smoke and lung cancer in nonsmoking women. A multicenter study. JAMA. 1994;271:1752–9.

    CAS  PubMed  Google Scholar 

  156. Lee P. Misclassification of smoking habits and passive smoking. Berlin: Springer Verlag; 1988.

    Google Scholar 

  157. U.S. Department of Health and Human Services. The health consequences of involuntary exposure to tobacco smoke: a report of the Surgeon General. Atlanta: U.S. Department of Health and Human Services; Centers for Disease Control and Prevention; Coordinating Center for Health Promotion; National Center for Chronic Disease Prevention and Health; Promotion Office on Smoking and Health; 2006.

    Google Scholar 

  158. Wu AH. Exposure misclassification bias in studies of environmental tobacco smoke and lung cancer. Environ Health Perspect. 1999;107:873–7.

    PubMed Central  PubMed  Google Scholar 

  159. Wald NJ, Nanchahal K, Thompson SG, Cuckle HS. Does breathing other people’s tobacco smoke cause lung cancer? Br Med J. 1986;293:1217–22.

    CAS  Google Scholar 

  160. Hackshaw AK, Law MR, Wald NJ. The accumulated evidence on lung cancer and environmental tobacco smoke. Br Med J. 1997;315:980–8.

    CAS  Google Scholar 

  161. Tola S, Kalliomaki PL, Pukkala E, Asp S, Korkala ML. Incidence of cancer among welders, platers, machinists, and pipe fitters in shipyards and machine shops. Br J Ind Med. 1988;45:209–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Stern RM. Assessment of risk of lung cancer for welders. Arch Environ Health. 1983;38:148–55.

    CAS  PubMed  Google Scholar 

  163. Steenland K, Beaumont J, Hornung R. The use of regression analyses in a cohort mortality study of welders. J Chronic Dis. 1986;39:287–94.

    CAS  PubMed  Google Scholar 

  164. Steenland K, Beaumont J, Elliot L. Lung cancer in mild steel welders. Am J Epidemiol. 1991;133:220–9.

    CAS  PubMed  Google Scholar 

  165. Langard S. Nickel-related cancer in welders. Sci Total Environ. 1994;148:303–9.

    CAS  PubMed  Google Scholar 

  166. Antonini JM. Health effects of welding. Crit Rev Toxicol. 2003;33:61–103.

    CAS  PubMed  Google Scholar 

  167. Antonini JM, Lewis AB, Roberts JR, Whaley DA. Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am J Ind Med. 2003;43:350–60.

    CAS  PubMed  Google Scholar 

  168. Ambroise D, Wild P, Moulin JJ. Update of a meta-analysis on lung cancer and welding. Scand J Work Environ Health. 2006;32:22–31.

    PubMed  Google Scholar 

  169. Stettler LE, Groth DH, Platek SF, Burg JR. Particulate concentrations in urban lungs. In: Ingram P, Shelburne JD, Roggli VL, editors. Microprobe analysis in medicine. New York: Hemisphere; 1989. p. 133–46.

    Google Scholar 

  170. McDonald JW, Roggli VL, Churg A, Shelburne JD. Microprobe analysis in pulmonary pathology. In: Ingram P, editor. Biomedical applications of microprobe analysis. San Diego: Academic; 1999. p. 201–56.

    Google Scholar 

  171. Morgan A, Holmes A. Distribution and characteristics of amphibole asbestos fibres, measured with the light microscope, in the left lung of an insulation worker. Br J Ind Med. 1983;40:45–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Roggli VL, Ingram P, Linton RW, Gutknecht WF, Mastin P, Shelburne JD. New techniques for imaging and analyzing lung tissue. Environ Health Perspect. 1984;56:163–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  173. Butnor KJ, Sporn TA, Ingram P, Gunasegaram S, Pinto JF, Roggli VL. Beryllium detection in human lung tissue using electron probe x-ray microanalysis. Mod Pathol. 2003;16:1171–7.

    PubMed  Google Scholar 

  174. Travis WD. Pathology of lung cancer. Clin Chest Med. 2011;33:669–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth N. Pavlisko MD .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 9.16 Example of questionnaire used for retrospective assessment of asbestos exposure of insulation workers

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Pavlisko, E.N., Boffetta, P., Roggli, V.L. (2014). Lung Cancer (Exposure Assessment, Pathology, and Epidemiology). In: Anttila, S., Boffetta, P. (eds) Occupational Cancers. Springer, London. https://doi.org/10.1007/978-1-4471-2825-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2825-0_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2824-3

  • Online ISBN: 978-1-4471-2825-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics