Skip to main content

Mechanisms of Calcium Influx Following Stroke

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Stroke is followed by a dramatic increase in intracellular calcium. This excessive increase in calcium levels is critical in the initiation of neuronal cell death. N-Methyl-d-aspartate (NMDA) receptor and L-type voltage-dependent calcium channel antagonists were unsuccessful at providing neuroprotection following ischemia in clinical trials. Therefore, recent research has focused on identifying novel mechanisms of calcium influx. This chapter reviews the evidence which links various receptors, channels, and transporters to calcium influx following stroke. Particular attention is paid to the therapeutic potential of targeting these various pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science 298:846–850

    PubMed  CAS  Google Scholar 

  • Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877

    PubMed  CAS  Google Scholar 

  • Albers GW (1990) Potential therapeutic uses of N-methyl-D-aspartate antagonists in cerebral ischemia. Clin Neuropharmacol 13:177–197

    PubMed  CAS  Google Scholar 

  • Allen NJ, Attwell D (2002) Modulation of ASIC channels in rat cerebellar purkinje neurons by ischaemia-related signals. J Physiol 543:521–529

    PubMed  CAS  Google Scholar 

  • Amarjargal N, Mazurek B, Haupt H, Andreeva N, Fuchs J, Gross J (2008) Effects of SERCA and PMCA inhibitors on the survival of rat cochlear hair cells during ischemia in vitro. Physiol Res 57:631–638

    PubMed  CAS  Google Scholar 

  • Arikkath J, Campbell KP (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr Opin Neurobiol 13:298–307

    PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    PubMed  CAS  Google Scholar 

  • Asakura K, Matsuo Y, Kanemasa T, Ninomiya M (1997) P/Q-type Ca2+ channel blocker omega-agatoxin IVA protects against brain injury after focal ischemia in rats. Brain Res 776:140–145

    PubMed  CAS  Google Scholar 

  • Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305

    PubMed  CAS  Google Scholar 

  • Ayub K, Hallett MB (2004) The mitochondrial ADPR link between Ca2+ store release and Ca2+ influx channel opening in immune cells. FASEB J 18:1335–1338

    PubMed  CAS  Google Scholar 

  • Bae CY, Sun HS (2011) TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin 32:725–733

    PubMed  CAS  Google Scholar 

  • Bancila M, Copin JC, Daali Y, Schatlo B, Gasche Y, Bijlenga P (2011) Two structurally different T-type Ca(2+) channel inhibitors, mibefradil and pimozide, protect CA1 neurons from delayed death after global ischemia in rats. Fundam Clin Pharmacol 25:469–478

    PubMed  CAS  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120:275–285

    PubMed  CAS  Google Scholar 

  • Bargiotas P, Monyer H, Schwaninger M (2009) Hemichannels in cerebral ischemia. Curr Mol Med 9:186–194

    PubMed  CAS  Google Scholar 

  • Baron A, Waldmann R, Lazdunski M (2002) ASIC-like, proton-activated currents in rat ­hippocampal neurons. J Physiol 539:485–494

    PubMed  CAS  Google Scholar 

  • Bassilana F, Champigny G, Waldmann R, de Weille JR, Heurteaux C, Lazdunski M (1997) The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a ­heteromultimeric H+-gated Na+ channel with novel properties. J Biol Chem 272:28819–28822

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2010) Neuronal voltage-gated calcium channels: brief overview of their function and clinical implications in neurology. Neurology 74:1310–1315

    PubMed  Google Scholar 

  • Benveniste M, Dingledine R (2005) Limiting stroke-induced damage by targeting an acid channel. N Engl J Med 352:85–86

    PubMed  CAS  Google Scholar 

  • Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374

    PubMed  CAS  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/calcium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schroder UH (2000) Inhibition of different pathways influencing Na(+) homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 39:1779–1787

    PubMed  CAS  Google Scholar 

  • Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    PubMed  CAS  Google Scholar 

  • Brini M, Carafoli E (2011) The plasma membrane Ca(2)  +  ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3. doi:10.1101/cshperspect.a004168

    Google Scholar 

  • Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204:939–946

    PubMed  CAS  Google Scholar 

  • Buchan AM, Gertler SZ, Li H, Xue D, Huang ZG, Chaundy KE, Barnes K, Lesiuk HJ (1994) A selective N-type Ca(2+)-channel blocker prevents CA1 injury 24 h following severe forebrain ischemia and reduces infarction following focal ischemia. J Cereb Blood Flow Metab 14:903–910

    PubMed  CAS  Google Scholar 

  • Butcher SP, Bullock R, Graham DI, McCulloch J (1990) Correlation between amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 21:1727–1733

    PubMed  CAS  Google Scholar 

  • Canitano A, Papa M, Boscia F, Castaldo P, Sellitti S, Taglialatela M, Annunziato L (2002) Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann N Y Acad Sci 976:394–404

    PubMed  CAS  Google Scholar 

  • Chai S, Li M, Branigan D, Xiong ZG, Simon RP (2010) Activation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking. J Biol Chem 285:13002–13011

    PubMed  CAS  Google Scholar 

  • Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH, Xiong ZQ (2008) Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke 39:3042–3048

    PubMed  CAS  Google Scholar 

  • Chen HC, Xie J, Zhang Z, Su LT, Yue L, Runnels LW (2010a) Blockade of TRPM7 channel ­activity and cell death by inhibitors of 5-lipoxygenase. PLoS One 5:e11161

    PubMed  Google Scholar 

  • Chen X, Numata T, Li M, Mori Y, Orser BA, Jackson MF, Xiong ZG, MacDonald JF (2010b) The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations. Mol Brain 3:38

    PubMed  CAS  Google Scholar 

  • Chen X, Qiu L, Li M, Durrnagel S, Orser BA, Xiong ZG, MacDonald JF (2010c) Diarylamidines: high potency inhibitors of acid-sensing ion channels. Neuropharmacology 58:1045–1053

    PubMed  CAS  Google Scholar 

  • Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34:401–427

    PubMed  CAS  Google Scholar 

  • Choi DW (1985) Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci Lett 58:293–297

    PubMed  CAS  Google Scholar 

  • Choi DW (1987) Ionic dependence of glutamate neurotoxicity. J Neurosci 7:369–379

    PubMed  CAS  Google Scholar 

  • Chu XP, Miesch J, Johnson M, Root L, Zhu XM, Chen D, Simon RP, Xiong ZG (2002) Proton-gated channels in PC12 cells. J Neurophysiol 87:2555–2561

    PubMed  CAS  Google Scholar 

  • Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 101:2894–2899

    PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    PubMed  CAS  Google Scholar 

  • Clark K, Middelbeek J, Morrice NA, Figdor CG, Lasonder E, van Leeuwen FN (2008) Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One 3:e1876

    PubMed  Google Scholar 

  • Contreras JE, Sanchez HA, Eugenin EA, Speidel D, Theis M, Willecke K, Bukauskas FF, Bennett MV, Saez JC (2002) Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc Natl Acad Sci U S A 99:495–500

    PubMed  CAS  Google Scholar 

  • Contreras JE, Sanchez HA, Veliz LP, Bukauskas FF, Bennett MV, Saez JC (2004) Role of ­connexin-based gap junction channels and hemichannels in ischemia-induced cell death in nervous tissue. Brain Res Brain Res Rev 47:290–303

    PubMed  CAS  Google Scholar 

  • Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, Simon RP, Xiong ZG (2011) Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal 14:1815–1827

    PubMed  CAS  Google Scholar 

  • de Pina-Benabou MH, Szostak V, Kyrozis A, Rempe D, Uziel D, Urban-Maldonado M, Benabou S, Spray DC, Federoff HJ, Stanton PK, Rozental R (2005) Blockade of gap junctions in vivo provides neuroprotection after perinatal global ischemia. Stroke 36:2232–2237

    PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397

    PubMed  CAS  Google Scholar 

  • Du J, Xie J, Yue L (2009) Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol 134:471–488

    PubMed  CAS  Google Scholar 

  • Duan B, Wang YZ, Yang T, Chu XP, Yu Y, Huang Y, Cao H, Hansen J, Simon RP, Zhu MX, Xiong ZG, Xu TL (2011) Extracellular spermine exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. J Neurosci 31:2101–2112

    PubMed  CAS  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-D-aspartate. J Neurosci 15:6377–6388

    PubMed  CAS  Google Scholar 

  • Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Menez A, Lazdunski M (2000) Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J Biol Chem 275:25116–25121

    PubMed  CAS  Google Scholar 

  • Fonfria E, Mattei C, Hill K, Brown JT, Randall A, Benham CD, Skaper SD, Campbell CA, Crook B, Murdock PR, Wilson JM, Maurio FP, Owen DE, Tilling PL, McNulty S (2006a) TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res 26:179–198

    PubMed  CAS  Google Scholar 

  • Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006b) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    PubMed  CAS  Google Scholar 

  • Gao J, Duan B, Wang DG, Deng XH, Zhang GY, Xu L, Xu TL (2005) Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death. Neuron 48:635–646

    PubMed  CAS  Google Scholar 

  • Giffard RG, Monyer H, Christine CW, Choi DW (1990) Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical ­cultures. Brain Res 506:339–342

    PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    PubMed  CAS  Google Scholar 

  • Gopinath RM, Vincenzi FF (1977) Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun 77:1203–1209

    PubMed  CAS  Google Scholar 

  • Gribkoff VK, Winquist RJ (2005) Voltage-gated cation channel modulators for the treatment of stroke. Expert Opin Investig Drugs 14:579–592

    PubMed  CAS  Google Scholar 

  • Gu L, Liu X, Yang Y, Luo D, Zheng X (2010a) ASICs aggravate acidosis-induced injuries during ischemic reperfusion. Neurosci Lett 479:63–68

    PubMed  CAS  Google Scholar 

  • Gu L, Yang Y, Sun Y, Zheng X (2010b) Puerarin inhibits acid-sensing ion channels and protects against neuron death induced by acidosis. Planta Med 76:583–588

    PubMed  CAS  Google Scholar 

  • Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE (1995) NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implication for cell death. J Neurochem 65:2016–2021

    PubMed  CAS  Google Scholar 

  • Hakim AM. Depression, strokes and dementia: new biological insights into an unfortunate pathway. Cardiovasc Psychiatry Neurol 2011;2011:649–629

    PubMed  CAS  Google Scholar 

  • Hao L, Rigaud JL, Inesi G (1994) Ca2+/H+ countertransport and electrogenicity in proteoliposomes containing erythrocyte plasma membrane Ca-ATPase and exogenous lipids. J Biol Chem 269:14268–14275

    PubMed  CAS  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci 11:682–696

    PubMed  CAS  Google Scholar 

  • Henrich M, Buckler KJ (2008) Effects of anoxia and aglycemia on cytosolic calcium regulation in rat sensory neurons. J Neurophysiol 100:456–473

    PubMed  CAS  Google Scholar 

  • Hillered L, Hallstrom A, Segersvard S, Persson L, Ungerstedt U (1989) Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. J Cereb Blood Flow Metab 9:607–616

    PubMed  CAS  Google Scholar 

  • Hong KS, Kang DW, Bae HJ, Kim YK, Han MK, Park JM, Rha JH, Lee YS, Koo JS, Cho YJ, Kwon SU, Kim SE, Park SH (2010) Effect of cilnidipine vs losartan on cerebral blood flow in hypertensive patients with a history of ischemic stroke: a randomized controlled trial. Acta Neurol Scand 121:51–57

    PubMed  CAS  Google Scholar 

  • Horn J, Limburg M (2000) Calcium antagonists for acute ischemic stroke. Cochrane Database Syst Rev (2):CD001928

    Google Scholar 

  • Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4:869–870

    PubMed  CAS  Google Scholar 

  • Immke DC, McCleskey EW (2003) Protons open acid-sensing ion channels by catalyzing relief of Ca2+ blockade. Neuron 37:75–84

    PubMed  CAS  Google Scholar 

  • Ishida A, Shimazaki K, Kawai N (1992) Ischemia-induced changes in PIP2 levels of gerbil ­hippocampus. Neurosci Res 15:305–309

    PubMed  CAS  Google Scholar 

  • Iwamoto T (2007) Na+/Ca2+ exchange as a drug target–insights from molecular pharmacology and genetic engineering. Ann N Y Acad Sci 1099:516–528

    PubMed  CAS  Google Scholar 

  • Jager AK, Saaby L (2011) Flavonoids and the CNS. Molecules 16:1471–1485

    PubMed  CAS  Google Scholar 

  • Jarrett HW, Penniston JT (1977) Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3′:5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun 77:1210–1216

    PubMed  CAS  Google Scholar 

  • Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148:1301–1308

    PubMed  CAS  Google Scholar 

  • Jeffs GJ, Meloni BP, Bakker AJ, Knuckey NW (2007) The role of the Na(+)/Ca(2+) exchanger (NCX) in neurons following ischaemia. J Clin Neurosci 14:507–514

    PubMed  CAS  Google Scholar 

  • Jencks WP (1989) Utilization of binding energy and coupling rules for active transport and other coupled vectorial processes. Methods Enzymol 171:145–164

    PubMed  CAS  Google Scholar 

  • Jetti SK, Swain SM, Majumder S, Chatterjee S, Poornima V, Bera AK (2010) Evaluation of the role of nitric oxide in acid sensing ion channel mediated cell death. Nitric Oxide 22:213–219

    PubMed  CAS  Google Scholar 

  • Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, Herson PS (2011) Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 31(11):2160–2168

    PubMed  CAS  Google Scholar 

  • Jiang J, Li M, Yue L (2005) Potentiation of TRPM7 inward currents by protons. J Gen Physiol 126:137–150

    PubMed  CAS  Google Scholar 

  • Jiang H, Tian SL, Zeng Y, Li LL, Shi J (2008) TrkA pathway (s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation. Brain Res Bull 76:124–130

    PubMed  CAS  Google Scholar 

  • John SA, Kondo R, Wang SY, Goldhaber JI, Weiss JN (1999) Connexin-43 hemichannels opened by metabolic inhibition. J Biol Chem 274:236–240

    PubMed  CAS  Google Scholar 

  • Kaku DA, Giffard RG, Choi DW (1993) Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260:1516–1518

    PubMed  CAS  Google Scholar 

  • Katayama Y, Kawamata T, Tamura T, Hovda DA, Becker DP, Tsubokawa T (1991) Calcium-dependent glutamate release concomitant with massive potassium flux during cerebral ischemia in vivo. Brain Res 558:136–140

    PubMed  CAS  Google Scholar 

  • Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29

    PubMed  CAS  Google Scholar 

  • Kinouchi H, Imaizumi S, Yoshimoto T, Yamamoto H, Motomiya M (1990) Changes of polyphosphoinositides, lysophospholipid, and free fatty acids in transient cerebral ischemia of rat brain. Mol Chem Neuropathol 12:215–228

    PubMed  CAS  Google Scholar 

  • Knierim E, Leisle L, Wagner C, Weschke B, Lucke B, Bohner G, Dreier JP, Schuelke M (2011) Recurrent stroke due to a novel voltage sensor mutation in Cav2.1 responds to verapamil. Stroke 42:e14–e17

    PubMed  CAS  Google Scholar 

  • Komuro I, Ohtsuka M (2004) Forefront of Na+/Ca2+ exchanger studies: role of Na+/Ca2+ exchanger–lessons from knockout mice. J Pharmacol Sci 96:23–26

    PubMed  CAS  Google Scholar 

  • Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, Willecke K, Naus CC (2010) The connexin43 C-terminal region mediates neuroprotection during stroke. J Neuropathol Exp Neurol 69:196–206

    PubMed  CAS  Google Scholar 

  • Kristian T, Gido G, Kuroda S, Schutz A, Siesjo BK (1998) Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale 120:503–509

    PubMed  CAS  Google Scholar 

  • Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5:282–295

    PubMed  Google Scholar 

  • Lee TH, Kato H, Chen ST, Kogure K, Itoyama Y (1998) Expression of nerve growth factor and trkA after transient focal cerebral ischemia in rats. Stroke 29:1687–1696, discussion 1697

    PubMed  CAS  Google Scholar 

  • Lee MS, Wu YS, Yang DY, Lee JB, Cheng FC (2002) Significantly decreased extracellular magnesium in brains of gerbils subjected to cerebral ischemia. Clin Chim Acta 318:121–125

    PubMed  CAS  Google Scholar 

  • Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, Philipson KD (1994) Cloning of the NCX2 isoform of the plasma membrane Na(+)-Ca2+ exchanger. J Biol Chem 269:17434–17439

    PubMed  CAS  Google Scholar 

  • Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537

    PubMed  CAS  Google Scholar 

  • Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, Yue L (2007) Molecular determinants of Mg2+ and Ca2+ permeability and pH sensitivity in TRPM6 and TRPM7. J Biol Chem 282:25817–25830

    PubMed  CAS  Google Scholar 

  • Li M, Inoue K, Branigan D, Kratzer E, Hansen JC, Chen JW, Simon RP, Xiong ZG (2010) Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J Cereb Blood Flow Metab 30:1247–1260

    PubMed  Google Scholar 

  • Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857

    PubMed  CAS  Google Scholar 

  • MacDonald JF, Xiong ZG, Jackson MF (2006) Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci 29:75–81

    PubMed  CAS  Google Scholar 

  • MacGregor DG, Avshalumov MV, Rice ME (2003) Brain edema induced by in vitro ischemia: causal factors and neuroprotection. J Neurochem 85:1402–1411

    PubMed  CAS  Google Scholar 

  • MacVicar BA, Thompson RJ (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33:93–102

    PubMed  CAS  Google Scholar 

  • Madry C, Haglerod C, Attwell D (2010) The role of pannexin hemichannels in the anoxic depolarization of hippocampal pyramidal cells. Brain 133:3755–3763

    PubMed  Google Scholar 

  • Manev H, Favaron M, Guidotti A, Costa E (1989) Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Mol Pharmacol 36:106–112

    PubMed  CAS  Google Scholar 

  • Mari Y, Katnik C, Cuevas J (2010) ASIC1a channels are activated by endogenous protons ­during ischemia and contribute to synergistic potentiation of intracellular Ca(2+) overload during ischemia and acidosis. Cell Calcium 48:70–82

    PubMed  CAS  Google Scholar 

  • Matsuda T, Takuma K, Nishiguchi E, Hashimoto H, Azuma J, Baba A (1996) Involvement of Na+-Ca2+ exchanger in reperfusion-induced delayed cell death of cultured rat astrocytes. Eur J Neurosci 8:951–958

    PubMed  CAS  Google Scholar 

  • Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, Takahashi K, Takahashi T, Suzuki T, Ota T, Hamano-Takahashi A, Onishi M, Tanaka Y, Kameo K, Baba A (2001) SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:249–256

    PubMed  CAS  Google Scholar 

  • Mazurek B, Amarjargal N, Haupt H, Gross J (2006) High potassium concentrations protect inner and outer hair cells in the newborn rat culture from ischemia-induced damage. Hear Res 215:31–38

    PubMed  CAS  Google Scholar 

  • McGuire D, Bowersox S, Fellmann JD, Luther RR (1997) Sympatholysis after neuron-specific, N-type, voltage-sensitive calcium channel blockade: first demonstration of N-channel function in humans. J Cardiovasc Pharmacol 30:400–403

    PubMed  CAS  Google Scholar 

  • Miao Y, Zhang W, Lin Y, Lu X, Qiu Y (2010) Neuroprotective effects of ischemic preconditioning on global brain ischemia through up-regulation of acid-sensing ion channel 2a. Int J Mol Sci 11:140–153

    PubMed  CAS  Google Scholar 

  • Mishra V, Verma R, Raghubir R (2010) Neuroprotective effect of flurbiprofen in focal cerebral ischemia: the possible role of ASIC1a. Neuropharmacology 59:582–588

    PubMed  CAS  Google Scholar 

  • Molinaro P, Cuomo O, Pignataro G, Boscia F, Sirabella R, Pannaccione A, Secondo A, Scorziello A, Adornetto A, Gala R, Viggiano D, Sokolow S, Herchuelz A, Schurmans S, Di Renzo G, Annunziato L (2008) Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J Neurosci 28:1179–1184

    PubMed  CAS  Google Scholar 

  • Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    PubMed  CAS  Google Scholar 

  • Monteith GR, McAndrew D, Faddy HM, Roberts-Thomson SJ (2007) Calcium and cancer: targeting Ca2+ transport. Nat Rev Cancer 7:519–530

    PubMed  CAS  Google Scholar 

  • Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14:362–369

    PubMed  CAS  Google Scholar 

  • Muir KW, Lees KR (1995) Clinical experience with excitatory amino acid antagonist drugs. Stroke 26:503–513

    PubMed  CAS  Google Scholar 

  • Muir KW, Lees KR (2003) Excitatory amino acid antagonists for acute stroke. Cochrane Database Syst Rev (3):CD001244

    Google Scholar 

  • Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595

    PubMed  CAS  Google Scholar 

  • Nakase T, Maeda T, Yoshida Y, Nagata K (2009) Ischemia alters the expression of connexins in the aged human brain. J Biomed Biotechnol 2009:147946

    PubMed  Google Scholar 

  • Nedergaard M, Goldman SA, Desai S, Pulsinelli WA (1991a) Acid-induced death in neurons and glia. J Neurosci 11:2489–2497

    PubMed  CAS  Google Scholar 

  • Nedergaard M, Kraig RP, Tanabe J, Pulsinelli WA (1991b) Dynamics of interstitial and intracellular pH in evolving brain infarct. Am J Physiol 260:R581–R588

    PubMed  CAS  Google Scholar 

  • Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science 250:562–565

    PubMed  CAS  Google Scholar 

  • Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem 271:24914–24921

    PubMed  CAS  Google Scholar 

  • Niggli V, Sigel E, Carafoli E (1982) The purified Ca2+ pump of human erythrocyte membranes catalyzes an electroneutral Ca2+-H+ exchange in reconstituted liposomal systems. J Biol Chem 257:2350–2356

    PubMed  CAS  Google Scholar 

  • Nikonenko I, Bancila M, Bloc A, Muller D, Bijlenga P (2005) Inhibition of T-type calcium ­channels protects neurons from delayed ischemia-induced damage. Mol Pharmacol 68:84–89

    PubMed  CAS  Google Scholar 

  • Oguro K, Nakamura M, Masuzawa T (1995) Histochemical study of ca (2+)-ATPase activity in ischemic CA1 pyramidal neurons in the gerbil hippocampus. Acta Neuropathol 90:448–453

    PubMed  CAS  Google Scholar 

  • Olah ME, Jackson MF, Li H, Perez Y, Sun HS, Kiyonaka S, Mori Y, Tymianski M, MacDonald JF (2009) Ca2  +  -dependent induction of TRPM2 currents in hippocampal neurons. J Physiol 587:965–979

    PubMed  CAS  Google Scholar 

  • Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    PubMed  CAS  Google Scholar 

  • Orellana JA, Froger N, Ezan P, Jiang JX, Bennett MV, Naus CC, Giaume C, Saez JC (2011) ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem 118(5):826–840

    PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565

    PubMed  CAS  Google Scholar 

  • Palmgren MG, Axelsen KB (1998) Evolution of P-type ATPases. Biochim Biophys Acta 1365:37–45

    PubMed  CAS  Google Scholar 

  • Pandey AK, Hazari PP, Patnaik R, Mishra AK (2011) The role of ASIC1a in neuroprotection elicited by quercetin in focal cerebral ischemia. Brain Res 1383:289–299

    PubMed  CAS  Google Scholar 

  • Papa M, Canitano A, Boscia F, Castaldo P, Sellitti S, Porzig H, Taglialatela M, Annunziato L (2003) Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J Comp Neurol 461:31–48

    PubMed  CAS  Google Scholar 

  • Perez-Reyes E (1999) Three for T: molecular analysis of the low voltage-activated calcium channel family. Cell Mol Life Sci 56:660–669

    PubMed  CAS  Google Scholar 

  • Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442

    PubMed  CAS  Google Scholar 

  • Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, Knowles HM, Ferraris D, Li W, Zhang J, Stoddard BL, Scharenberg AM (2005) Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem 280:6138–6148

    PubMed  CAS  Google Scholar 

  • Philipson KD, Nicoll DA, Ottolia M, Quednau BD, Reuter H, John S, Qiu Z (2002) The Na+/Ca2+ exchange molecule: an overview. Ann N Y Acad Sci 976:1–10

    PubMed  CAS  Google Scholar 

  • Pignataro G, Gala R, Cuomo O, Tortiglione A, Giaccio L, Castaldo P, Sirabella R, Matrone C, Canitano A, Amoroso S, Di Renzo G, Annunziato L (2004) Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35:2566–2570

    PubMed  CAS  Google Scholar 

  • Pignataro G, Simon RP, Xiong ZG (2007) Prolonged activation of ASIC1a and the time window for neuroprotection in cerebral ischaemia. Brain 130:151–158

    PubMed  Google Scholar 

  • Pignataro G, Scorziello A, Di Renzo G, Annunziato L (2009) Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J 276:46–57

    PubMed  CAS  Google Scholar 

  • Pignataro G, Cuomo O, Esposito E, Sirabella R, Di Renzo G, Annunziato L (2011a) ASIC1a ­contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. Int J Physiol Pathophysiol Pharmacol 3:1–8

    PubMed  CAS  Google Scholar 

  • Pignataro G, Esposito E, Cuomo O, Sirabella R, Boscia F, Guida N, Di Renzo G, Annunziato L (2011b) The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cereb Blood Flow Metab 31:362–370

    PubMed  CAS  Google Scholar 

  • Pinto Fde T, Adamo HP (2002) Deletions in the acidic lipid-binding region of the plasma membrane Ca2+ pump. A mutant with high affinity for Ca2+ resembling the acidic lipid-activated enzyme. J Biol Chem 277:12784–12789

    PubMed  Google Scholar 

  • Pluta R, Salinska E, Puka M, Stafiej A, Lazarewicz JW (1988) Early changes in extracellular amino acids and calcium concentrations in rabbit hippocampus following complete 15-min cerebral ischemia. Resuscitation 16:193–210

    PubMed  CAS  Google Scholar 

  • Rehncrona S (1985) Brain acidosis. Ann Emerg Med 14:770–776

    PubMed  CAS  Google Scholar 

  • Reinhardt TA, Horst RL, Waters WR (2004) Characterization of cos-7 cells overexpressing the rat secretory pathway Ca2+-ATPase. Am J Physiol Cell Physiol 286:C164–C169

    PubMed  CAS  Google Scholar 

  • Renard S, Lingueglia E, Voilley N, Lazdunski M, Barbry P (1994) Biochemical analysis of the membrane topology of the amiloride-sensitive Na+ channel. J Biol Chem 269:12981–12986

    PubMed  CAS  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2001) TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291:1043–1047

    PubMed  CAS  Google Scholar 

  • Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP (2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  • Sakamoto K, Kawakami T, Shimada M, Yamaguchi A, Kuwagata M, Saito M, Nakahara T, Ishii K (2009) Histological protection by cilnidipine, a dual L/N-type Ca(2+) channel blocker, against neurotoxicity induced by ischemia-reperfusion in rat retina. Exp Eye Res 88:974–982

    PubMed  CAS  Google Scholar 

  • Salamino F, Sparatore B, Melloni E, Michetti M, Viotti PL, Pontremoli S, Carafoli E (1994) The plasma membrane calcium pump is the preferred calpain substrate within the erythrocyte. Cell Calcium 15:28–35

    PubMed  CAS  Google Scholar 

  • Sanchez HA, Orellana JA, Verselis VK, Saez JC (2009) Metabolic inhibition increases activity of connexin-32 hemichannels permeable to Ca2+ in transfected HeLa cells. Am J Physiol Cell Physiol 297:C665–C678

    PubMed  CAS  Google Scholar 

  • Sapolsky RM, Trafton J, Tombaugh GC (1996) Excitotoxic neuron death, acidotic endangerment, and the paradox of acidotic protection. Adv Neurol 71:237–244, discussion 244–245

    PubMed  CAS  Google Scholar 

  • Sattler R, Charlton MP, Hafner M, Tymianski M (1998) Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J Neurochem 71:2349–2364

    PubMed  CAS  Google Scholar 

  • Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284:1845–1848

    PubMed  CAS  Google Scholar 

  • Saugstad JA, Roberts JA, Dong J, Zeitouni S, Evans RJ (2004) Analysis of the membrane topology of the acid-sensing ion channel 2a. J Biol Chem 279:55514–55519

    PubMed  CAS  Google Scholar 

  • Schroder UH, Breder J, Sabelhaus CF, Reymann KG (1999) The novel Na+/Ca2+ exchange inhibitor KB-R7943 protects CA1 neurons in rat hippocampal slices against hypoxic/hypoglycemic injury. Neuropharmacology 38:319–321

    PubMed  CAS  Google Scholar 

  • Schwab BL, Guerini D, Didszun C, Bano D, Ferrando-May E, Fava E, Tam J, Xu D, Xanthoudakis S, Nicholson DW, Carafoli E, Nicotera P (2002) Cleavage of plasma membrane calcium pumps by caspases: a link between apoptosis and necrosis. Cell Death Differ 9:818–831

    PubMed  CAS  Google Scholar 

  • Siemkowicz E, Hansen AJ (1981) Brain extracellular ion composition and EEG activity following 10 minutes ischemia in normo- and hyperglycemic rats. Stroke 12:236–240

    PubMed  CAS  Google Scholar 

  • Siesjo BK, Katsura K, Kristian T (1996) Acidosis-related damage. Adv Neurol 71:209–233, ­discussion 234–236

    PubMed  CAS  Google Scholar 

  • Simon RP, Swan JH, Griffiths T, Meldrum BS (1984) Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 226:850–852

    PubMed  CAS  Google Scholar 

  • Siushansian R, Bechberger JF, Cechetto DF, Hachinski VC, Naus CC (2001) Connexin43 null mutation increases infarct size after stroke. J Comp Neurol 440:387–394

    PubMed  CAS  Google Scholar 

  • Sohl G, Maxeiner S, Willecke K (2005) Expression and functions of neuronal gap junctions. Nat Rev Neurosci 6:191–200

    PubMed  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, Macvicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    CAS  Google Scholar 

  • Strehler EE, Zacharias DA (2001) Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21–50

    PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na(+)-Ca2+ exchanger. J Neurosci 12:430–439

    PubMed  CAS  Google Scholar 

  • Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, Macdonald JF, Tymianski M (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307

    PubMed  CAS  Google Scholar 

  • Szydlowska K, Tymianski M (2010) Calcium, ischemia and excitotoxicity. Cell Calcium 47:122–129

    PubMed  CAS  Google Scholar 

  • Takahara A, Konda T, Enomoto A, Kondo N (2004) Neuroprotective effects of a dual L/N-type Ca(2+) channel blocker cilnidipine in the rat focal brain ischemia model. Biol Pharm Bull 27:1388–1391

    PubMed  CAS  Google Scholar 

  • Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y (2011) Roles of TRPM2 in oxidative stress. Cell Calcium 50(3):278–287

    Google Scholar 

  • Takei K, Araki N, Ohkubo T, Tamura N, Yamamoto T, Furuya D, Yanagisawa CT, Shimazu K (2009) Comparison of the anti-hypertensive effects of the L/N-type calcium channel antagonist cilnidipine, and the L-type calcium channel antagonist amlodipine in hypertensive patients with cerebrovascular disease. Intern Med 48:1357–1361

    PubMed  Google Scholar 

  • Takizawa S, Matsushima K, Fujita H, Nanri K, Ogawa S, Shinohara Y (1995) A selective N-type calcium channel antagonist reduces extracellular glutamate release and infarct volume in focal cerebral ischemia. J Cereb Blood Flow Metab 15:611–618

    PubMed  CAS  Google Scholar 

  • Tan Y, Liu M, Wu B (2008) Puerarin for acute ischaemic stroke. Cochrane Database Syst Rev (1):CD004955

    Google Scholar 

  • Thompson RJ, Macvicar BA (2008) Connexin and pannexin hemichannels of neurons and ­astrocytes. Channels (Austin) 2:81–86

    Google Scholar 

  • Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    PubMed  CAS  Google Scholar 

  • Tian SL, Jiang H, Zeng Y, Li LL, Shi J (2007) NGF-induced reduction of an outward-rectifying TRPM7-like current in rat CA1 hippocampal neurons. Neurosci Lett 419:93–98

    PubMed  CAS  Google Scholar 

  • Tombaugh GC, Sapolsky RM (1993) Evolving concepts about the role of acidosis in ischemic neuropathology. J Neurochem 61:793–803

    PubMed  CAS  Google Scholar 

  • Tong Q, Zhang W, Conrad K, Mostoller K, Cheung JY, Peterson BZ, Miller BA (2006) Regulation of the transient receptor potential channel TRPM2 by the Ca2+ sensor calmodulin. J Biol Chem 281:9076–9085

    PubMed  CAS  Google Scholar 

  • Toriyama H, Wang L, Saegusa H, Zong S, Osanai M, Murakoshi T, Noda T, Ohno K, Tanabe T (2002) Role of ca (v) 2.3 (alpha1E ) Ca2+ channel in ischemic neuronal injury. Neuroreport 13:261–265

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Cull-Candy SG (1990) Proton inhibition of N-methyl-D-aspartate receptors in ­cerebellar neurons. Nature 345:347–350

    PubMed  CAS  Google Scholar 

  • Triggle DJ (2006) L-type calcium channels. Curr Pharm Design 12:443–457

    CAS  Google Scholar 

  • Tymianski M, Charlton MP, Carlen PL, Tator CH (1993) Source specificity of early calcium ­neurotoxicity in cultured embryonic spinal neurons. J Neurosci 13:2085–2104

    PubMed  CAS  Google Scholar 

  • Vacher E, Richer C, Fornes P, Clozel JP, Giudicelli (1996) Mibefradil, a selective calcium T-channel blocker, in stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 27:686–694

    PubMed  CAS  Google Scholar 

  • Valentino K, Newcomb R, Gadbois T, Singh T, Bowersox S, Bitner S, Justice A, Yamashiro D, Hoffman BB, Ciaranello R (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci U S A 90:7894–7897

    PubMed  CAS  Google Scholar 

  • Van Baelen K, Vanoevelen J, Missiaen L, Raeymaekers L, Wuytack F (2001) The golgi PMR1 P-type ATPase of caenorhabditis elegans. Identification of the gene and demonstration of calcium and manganese transport. J Biol Chem 276:10683–10691

    PubMed  Google Scholar 

  • Van Baelen K, Vanoevelen J, Callewaert G, Parys JB, De Smedt H, Raeymaekers L, Rizzuto R, Missiaen L, Wuytack F (2003) The contribution of the SPCA1 Ca2+ pump to the Ca2+ accumulation in the golgi apparatus of HeLa cells assessed via RNA-mediated interference. Biochem Biophys Res Commun 306:430–436

    PubMed  Google Scholar 

  • Varki A (1998) Factors controlling the glycosylation potential of the golgi apparatus. Trends Cell Biol 8:34–40

    PubMed  CAS  Google Scholar 

  • Virag L, Szabo C (2002) The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    PubMed  CAS  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    PubMed  CAS  Google Scholar 

  • Waldmann R, Lazdunski M (1998) H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8:418–424

    PubMed  CAS  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated ­cation channel involved in acid-sensing. Nature 386:173–177

    PubMed  CAS  Google Scholar 

  • Wang Y, Denisova JV, Kang KS, Fontes JD, Zhu BT, Belousov AB (2010) Neuronal gap junctions are required for NMDA receptor-mediated excitotoxicity: implications in ischemic stroke. J Neurophysiol 104:3551–3556

    PubMed  CAS  Google Scholar 

  • Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci U S A 104:16323–16328

    PubMed  CAS  Google Scholar 

  • Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH Jr, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    PubMed  CAS  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International union of basic and clinical pharmacology. LXXVI. current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    PubMed  CAS  Google Scholar 

  • Wu WN, Wu PF, Chen XL, Zhang Z, Gu J, Yang YJ, Xiong QJ, Ni L, Wang F, Chen JG (2011) Sinomenine protects against ischemic brain injury: Involvement of co-inhibition of acid-­sensing ion channel 1a and L-type calcium channel. Br J Pharmacol 164(5):1445–1459

    PubMed  CAS  Google Scholar 

  • Xiong ZG, MacDonald JF (1999) Sensing of extracellular calcium by neurones. Can J Physiol Pharmacol 77:715–721

    PubMed  CAS  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    PubMed  CAS  Google Scholar 

  • Xiong ZG, Pignataro G, Li M, Chang SY, Simon RP (2008) Acid-sensing ion channels (ASICs) as pharmacological targets for neurodegenerative diseases. Curr Opin Pharmacol 8:25–32

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Takahara A (2009) Recent updates of N-type calcium channel blockers with therapeutic potential for neuropathic pain and stroke. Curr Top Med Chem 9:377–395

    PubMed  CAS  Google Scholar 

  • Yamashima T, Saido TC, Takita M, Miyazawa A, Yamano J, Miyakawa A, Nishijyo H, Yamashita J, Kawashima S, Ono T, Yoshioka T (1996) Transient brain ischaemia provokes Ca2+, PIP2 and calpain responses prior to delayed neuronal death in monkeys. Eur J Neurosci 8:1932–1944

    PubMed  CAS  Google Scholar 

  • Yang ZJ, Ni X, Carter EL, Kibler K, Martin LJ, Koehler RC (2011) Neuroprotective effect of acid-sensing ion channel inhibitor psalmotoxin-1 after hypoxia-ischemia in newborn piglet striatum. Neurobiol Dis 43:446–454

    PubMed  CAS  Google Scholar 

  • Ye ZC, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596

    PubMed  CAS  Google Scholar 

  • Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ (2004) Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A 101:6752–6757

    PubMed  CAS  Google Scholar 

  • Ying W, Han SK, Miller JW, Swanson RA (1999) Acidosis potentiates oxidative neuronal death by multiple mechanisms. J Neurochem 73:1549–1556

    PubMed  CAS  Google Scholar 

  • Zhang L, Deng T, Sun Y, Liu K, Yang Y, Zheng X (2008) Role for nitric oxide in permeability of hippocampal neuronal hemichannels during oxygen glucose deprivation. J Neurosci Res 86:2281–2291

    PubMed  CAS  Google Scholar 

  • Zhao Q, Smith ML, Siesjo BK (1994) The omega-conopeptide SNX-111, an N-type calcium channel blocker, dramatically ameliorates brain damage due to transient focal ischaemia. Acta Physiol Scand 150:459–461

    PubMed  CAS  Google Scholar 

  • Zhao L, Shi J, Sun N, Tian S, Meng X, Liu X, Li L (2005) Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway. J Huazhong Univ Sci Technol Med Sci 25:247–250

    PubMed  CAS  Google Scholar 

  • Zhao L, Wang Y, Sun N, Liu X, Li L, Shi J (2007) Electroacupuncture regulates TRPM7 expression through the trkA/PI3K pathway after cerebral ischemia-reperfusion in rats. Life Sci 81:1211–1222

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. MacDonald PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Belrose, J.C., Caetano, F.A., Yang, K., Lockhart, B.M.W., Jackson, M.F., MacDonald, J.F. (2012). Mechanisms of Calcium Influx Following Stroke. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_2

Download citation

Publish with us

Policies and ethics