Skip to main content

The Role of Iron in Brain Following Subarachnoid Hemorrhage

  • Chapter
  • First Online:
Metal Ion in Stroke

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Aneurysmal subarachnoid hemorrhage (SAH) is a serious disease ­causing high morbidity and mortality during early and delayed period. The exact mechanisms underlying brain injury are not fully identified. Recently, experimental studies have revealed that increased subarachnoid hemoglobin and its degradation product iron may play an important role in secondary brain injury following SAH. Treatment with an iron chelator has been proven to reduce brain edema, cerebral vasospasm, and neuronal cell death in a rat model of SAH. Therefore, increased iron deposition perivascular as well as in the brain tissue following subarachnoid ­hemoglobin degradation may be a therapeutic target for SAH patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balla G, Jacob HS, Balla J, Rosenberg M, Nath K, Apple F, Eaton JW, Vercellotti GM (1992) Ferritin: a cytoprotective antioxidant strategem of endothelium. J Biol Chem 267:18148–18153

    PubMed  CAS  Google Scholar 

  • Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE, Harbaugh RE, Patel AB, Rosenwasser RH (2009) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 40:994–1025

    Article  PubMed  Google Scholar 

  • Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia-ischemia and stroke. Brain Res 907:175–187

    Article  PubMed  CAS  Google Scholar 

  • Brouwers PJ, Dippel DW, Vermeulen M, Lindsay KW, Hasan D, van Gijn J (1993) Amount of blood on computed tomography as an independent predictor after aneurysm rupture. Stroke 24:809–814

    Article  PubMed  CAS  Google Scholar 

  • Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    Article  PubMed  CAS  Google Scholar 

  • Cahill WJ, Calvert JH, Zhang JH (2006) Mechanisms of early brin injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353

    Article  PubMed  CAS  Google Scholar 

  • Claassen J, Carhuapoma JR, Kreiter KT, Du EY, Connolly ES, Mayer SA (2002) Global cerebral edema after subarachnoid hemorrhage: frequency, predictors, and impact on outcome. Stroke 33:1225–1232

    Article  PubMed  Google Scholar 

  • Crompton MR (1964) The pathogenesis of cerebral infarction following the rupture of cerebral berry aneurysms. Brain 87:491–510

    Article  PubMed  CAS  Google Scholar 

  • Doczi T (1985) The pathogenetic and prognostic significance of blood-brain barrier damage at the acute stage of aneurysmal subarachnoid haemorrhage. Clinical and experimental studies. Acta Neurochir (Wien) 77:110–132

    Article  CAS  Google Scholar 

  • Endo H, Nito C, Kamada H, Yu F, Chan PH (2007) Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3β survival signaling. J Cereb Blood Flow Metab 27:975–982

    PubMed  CAS  Google Scholar 

  • He Y, Wan S, Hua Y, Keep RF, Xi G (2008) Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 28:897–905

    Article  PubMed  CAS  Google Scholar 

  • Ho HW, Batjer HH (1997) Aneurysmal subarachnoid hemorrhage: Pathophysiology and sequelae. In: Batjer HH (ed) Cerebrovascular Disease. Lippincott-Raven Publishers, Philadelphia, pp 889–899

    Google Scholar 

  • Horky LL, Pluta RM, Boock RJ, Oldfiled EH (1998) Role of ferrous iron chelator 2,2′-dipyridyl in preventing delayed vasospasm in a primate model of subarachnoid hemorrhage. J Neurosurg 88:298–303

    Article  PubMed  CAS  Google Scholar 

  • Hütter BO, Kreitschmann-Andermahr I, Gilsbach JM (2001) Health-related quality of life after aneurysmal subarachnoid hemorrhage: impacts of bleeding severity, computerized tomography findings, surgery, vasospasm, and neurological grade. J Neurosurg 94:241–251

    Article  PubMed  Google Scholar 

  • Kassell NF, Sasaki T, Colohan ART, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16:562–572

    Article  PubMed  CAS  Google Scholar 

  • Kaur D, Rajagopalan S, Chinta S, Kumar J, Di Monte D, Cherny RA, Andersen JK (2007) Chronic ferritin expression within murine dopaminergic midbrain neurons result in a progressive age-related neurodegeneration. Brain Res 1140:188–194

    Article  PubMed  CAS  Google Scholar 

  • Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, Du YE, Stern Y, Connolly ES, Mayer SA (2002) Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke 33:200–208

    Article  PubMed  Google Scholar 

  • Kress GJ, Dineley KE, Reynolds IJ (2002) The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes. J Neurosci 22:5848–5855

    PubMed  CAS  Google Scholar 

  • Kurz T, Brunk UT (2009) Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form. Autophagy 5:93–95

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Sagher O, Keep R, Hua Y, Xi G (2009a) Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery 65:331–343

    Article  PubMed  Google Scholar 

  • Lee J-Y, He Y, Sagher O, Keep R, Hua Y, Xi G (2009b) Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res 1287:126–135

    Article  PubMed  CAS  Google Scholar 

  • Lee J-Y, Keep RF, He Y, Sagher O, Hua Y, Xi G (2010) Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab 30:1793–1803

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688

    Article  PubMed  CAS  Google Scholar 

  • Levy YS, Streifler JY, Panet H, Melamed E, Offen D (2002) Hemin-induced apoptosis in PC12 and neuroblastoma cells: implications for local neuronal death associated with intracerebral hemorrhage. Neurotox Res 4:609–616

    Article  PubMed  CAS  Google Scholar 

  • Lochhead JL, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, Davis TP (2010) Oxidative stress increases blood-brain barrier permeability and induces alterations in occluding during hypoxia-reoxygenation. J Cereb Blood Flow Metab 30:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Macdonald RL, Weir BK (1991) A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22:971–982

    Article  PubMed  CAS  Google Scholar 

  • Mori T, Nagata K, Town T, Tan J, Matsui T, Asano T (2001) Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model. Stroke 32:636–642

    Article  PubMed  CAS  Google Scholar 

  • Nina P, Schisano G, Chiappetta F, Luisa Papa M, Maddaloni E, Brunori A, Capasso F, Corpetti MG, Demurtas F (2001) A study of blood coagulation and fibrinolytic system in spontaneous subarachnoid hemorrhage. Correlation with Hunt-Hess grade and outcome. Surg Neurol 55:197–203

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Zhang ZD, Marton LS, Yamini B, Windmeyer E, Johns L, Kowalczuk A, Lin G, Macdonald RL (2000) Heme oxygenase-1 and ferritin are increased in cerebral arteries after subarachnoid hemorrhage in monkeys. J Cereb Blood Flow Metab 20:1066–1076

    Article  PubMed  CAS  Google Scholar 

  • Prunell GF, Svendgaard NA, Alkass K, Mathiesen T (2005) Delayed cell death related to acute cerebral blood flow changes following subarachnoid hemorrhage in the rat brain. J Neurosurg 102:1046–1054

    Article  PubMed  Google Scholar 

  • Sato T, Sasaki T, Sakuma J, Watanabe T, Ichikawa M, Ito E, Matsumoto Y, Ando H, Saito K, Kikori K, Yusa T, Suzuki K, Watanabe T, Taira S, Sato M (2011) Quantification of subarachnoid hemorrhage by three-dimensional computed tomography: correlation between hematoma volume and symptomatic vasospasm. Neurol Med Chir 51:187–194

    Article  Google Scholar 

  • Sheehan JP, Polin RS, Sheehan JM, Baskaya MK, Kassell NF (1999) Participants factors ­associated with hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery 45:1120–1128

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Muramatsu M, Tanaka K, Fujiwara H, Kojima T, Taki W (2006) Cerebral spinal fluid ferritin in chronic hydrocephalus after aneurysmal subarachnoid hemorrhage. J Neurol 253:1170–1176

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Muramatsu M, Kojima T, Taki W (2003) Intracranial heme metabolism and cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 34:2796–2800

    Article  PubMed  Google Scholar 

  • Turner CP, Bergeron M, Matz P, Zegna A, Noble LJ, Panter SS, Sharp FR (1998) Heme ­oxygenase-1 (HO-1) is induced in glia throughout the brain by subarachnoid hemoglobin. J Cereb Blood Flow Metab 18:257–273

    Article  PubMed  CAS  Google Scholar 

  • Wagner KR, Sharp FR, Ardizzone TD, Lu A, Clark JF (2003) Heme and iron metabolism: role in cerebral hemorrhage. J Cereb Blood Flow Metab 23:629–652

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Hua Y, Keep RF, Nakamura T, Hoff JT, Xi G (2003) Iron and iron-handling proteins in the brain after intracerebral hemorrhage. Stroke 34:2964–2969

    Article  PubMed  CAS  Google Scholar 

  • Xi G, Wagner KR, Keep RF, Hua Y, de Courten-Myers GM, Broderick JP, Brott TG, Hoff JT (1998) The role of blood clot formation on early edema development following experimental intracerebral hemorrhage. Stroke 29:2580–2586

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Yul Lee MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, JY., Keep, R.F., Hua, Y., Pandey, A., Xi, G. (2012). The Role of Iron in Brain Following Subarachnoid Hemorrhage. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_13

Download citation

Publish with us

Policies and ethics