Skip to main content

Abstract

Electron energy-loss spectroscopy (EELS) involves analyzing the energy distribution of initially monoenergetic electrons after they have interacted with a specimen. This interaction is sometimes confined to a few atomic layers, as when a beam of low-energy (100–1000 eV) electrons is “reflected” from a solid surface. Because high voltages are not involved, the apparatus is relatively compact but the low penetration depth implies the use of ultrahigh vacuum. Otherwise information is obtained mainly from the carbonaceous or oxide layers on the specimen’s surface. At these low primary energies, a monochromator can reduce the energy spread of the primary beam to a few millielectron volts (1991) and if the spectrometer has comparable resolution, the spectrum contains features characteristic of energy exchange with the vibrational modes of surface atoms, as well as valence electron excitation in these atoms. The technique is therefore referred to as high-resolution electron energy-loss spectroscopy (HREELS) and is used to study the physics and chemistry of surfaces and of adsorbed atoms or molecules. Although it is an important tool of surface science, HREELS uses concepts that are somewhat different to those involved in electron microscope studies and will not be discussed further in the present volume. The instrumentation, theory, and applications of HREELS are described by Ibach and Mills (1982) and by Kesmodel (2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J., and Williams, S. (1992) Chemical contrast in x-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258, 972–975.

    Article  CAS  Google Scholar 

  • Ahn, C. C., and Krivanek, O. L. (1983) EELS Atlas, Arizona State University and Gatan Inc., Tempe, AZ

    Google Scholar 

  • Atwater, H. A., Wong, S. S., Ahn, C. C., Nikzad, S., and Frase, H. N. (1993) Analysis of monolayer films during molecular beam epitaxy by reflection electron energy loss spectroscopy. Surf. Sci. 298, 273–283.

    Article  CAS  Google Scholar 

  • Auchterlonie, G. J., McKenzie, D. R., and Cockayne, D. J. H. (1989) Using ELNES with parallel EELS for differentiating between a-Si:X thin films. Ultramicroscopy 31, 217–232.

    Article  CAS  Google Scholar 

  • Ball, M. D., Malis, T. F., and Steele, D. (1984) Ultramicrotomy as a specimen preparation technique for analytical electron microscopy. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 189–192.

    Google Scholar 

  • Baumeister, W., and Hahn, M. (1976) An improved method for preparing single-crystal specimen supports: H2O2 exfoliation of vermiculite. Micron 7, 247–251.

    Google Scholar 

  • Beamson, G., Porter, H. Q., and Turner, D. W. (1981) Photoelectron spectromicroscopy. Nature 290, 556–561.

    Article  CAS  Google Scholar 

  • Bennett, J. C., and Egerton, R. F. (1995) NiO test specimens for analytical electron microscopy: Round-robin results. J. Microsc. Soc. Am. 1, 143–149.

    CAS  Google Scholar 

  • Bentley, J., Angelini, P., and Sklad, P. S. (1984) Secondary fluorescence effects on x-ray microanalysis. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 315–317.

    Google Scholar 

  • Bihr, J., Benner, G., Krahl, D., Rilk, A., and Weimer, E. (1991) Design of an analytical TEM with integrated imaging Ω-spectrometer. In Proc. 49th Ann. Meet. Electron Microsc. Soc. Am., ed. G. W. Bailey, San Francisco Press, San Francisco, CA, pp. 354–355.

    Google Scholar 

  • Blackstock, A. W., Birkhoff, R. D., and Slater, M. (1955) Electron accelerator and high resolution analyser. Rev. Sci. Instrum. 26, 274–275.

    Article  Google Scholar 

  • Boersch, H., Geiger, J., and Hellwig, H. (1962) Steigerung der Auflösung bei der Elektronen-Energieanalyse. Phys. Lett. 3, 64–66.

    Article  CAS  Google Scholar 

  • Bohm, D., and Pines, D. (1951) A collective description of electron interactions: II. Collective vs. individual particle aspects of the interactions. Phys. Rev. 85, 338–353.

    Google Scholar 

  • Bonham, R. A., and Fink, M. (1974) High Energy Electron Scattering, Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Bravman, J. C., and Sinclair, R. (1984) The preparation of cross-section specimens for transmission electron microscopy. J. Electron Microsc. Tech. 1, 53–61.

    Article  CAS  Google Scholar 

  • Brydson, R. (2001) Electron Energy Loss Spectroscopy, Bios, Oxford.

    Google Scholar 

  • Buseck, P. R., Cowley, J. M., and Eyring, L. (1988) High-Resolution Transmission Electron Microscopy and Associated Techniques, Oxford University Press, New York, NY, and Oxford.

    Google Scholar 

  • Castaing, R. (1975) Energy filtering in electron microscopy and electron diffraction. In Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. B. Siegel, Wiley, New York, NY, pp. 287–301.

    Google Scholar 

  • Castaing, R., and Henry, L. (1962) Filtrage magnetique des vitesses en microscopie électronique. C.R. Acad. Sci. Paris B255, 76–78.

    Google Scholar 

  • Cazaux, J. (1983) Another expression for the minimum detectable mass in EELS, EPMA and AES. Ultramicroscopy 12, 83–86.

    Article  CAS  Google Scholar 

  • Chapman, H. N. (2009) X-ray imaging beyond the limits. Nat. Mater. 8, 299–301.

    Article  CAS  Google Scholar 

  • Chen, Z., Cochrane, R., and Loretto, M. H. (1984) Microanalysis of extracted precipitates from extracted steels. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 243–246.

    Google Scholar 

  • Cliff, G., and Lorimer, G. W. (1975) The quantitative analysis of thin specimens. J. Microsc. 103, 203–207

    Google Scholar 

  • Collett, S. A., Brown, L. M., and Jacobs, M. H. (1984) Demonstration of superior resolution of EELS over EDX in microanalysis. In Developments in Electron Microscopy and Analysis 1983, Inst. Phys. Conf. Ser. No. 68, ed. P. Doig, I.O.P., Bristol, pp. 103–106.

    Google Scholar 

  • Colliex, C. (1984) Electron energy-loss spectroscopy in the electron microscope. In Advances in Optical and Electron Microscopy, eds. V. E. Cosslett and R. Barer, Academic, London, Vol. 9, pp. 65–177.

    Google Scholar 

  • Colliex, C. (2004) Electron energy-loss spectroscopy on solids. In International Tables for Crystallography, 3rd edition, ed. E. Prince, Wiley, New York, NY, pp. 391–412.

    Google Scholar 

  • Colliex, C., and Jouffrey, B. (1972) Diffusion inelastique des electrons dans une solide par excitation de niveaus atomiques profonds. Philos. Mag. 25, 491–514.

    Article  CAS  Google Scholar 

  • Cook, R. F. (1971) Combined electron microscopy and energy loss analysis of glass. Philos. Mag. 24, 835–843.

    Article  CAS  Google Scholar 

  • Cowley, J. M. (1982) Surface energies and surface structure of small crystals studies by use of a STEM instrument. Surf. Sci. 114, 587–606.

    Article  CAS  Google Scholar 

  • Curtis, G. H., and Silcox, J. (1971) A Wien filter for use as an energy analyzer with an electron microscope. Rev. Sci. Instrum. 42, 630–637.

    Article  CAS  Google Scholar 

  • De Graef, M. (2003) Introduction to Conventional Transmission Electron Microscopy, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Disko, M. M., Ahn, C. C., and Fultz, B., eds. (1992) Transmission Electron Energy Loss Spectrometry in Materials Science. The Minerals, Metals and Materials Society, Warrendale, PA, 272 p.

    Google Scholar 

  • Duckworth, S. P., Craven, A. J., and Baker, T. N. (1984) Comparison of carbon and noncarbon replicas for ELS. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 235–238.

    Google Scholar 

  • Egerton, R. F. (1980f) Measurement of radiation damage by electron energy-loss spectroscopy, J. Microsc. 118, 389–399.

    Google Scholar 

  • Egerton, R. F. (1992b) Electron energy-loss spectroscopy – EELS. In Quantitative Microbeam Analysis, eds. A. G. Fitzgerald, B. E. Storey, and D. Fabian, SUSSP, Edinburgh, and IOP, Bristol, pp. 145–168.

    Google Scholar 

  • Egerton, R. F. (2005) Physical Principles of Electron Microscopy, Springer, New York, NY. ISBN: 978-0387-25800-0.

    Google Scholar 

  • Egerton, R. F. (2009) Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (25 pp). Online at stacks.iop.org/RoPP/72/016502

    Article  CAS  Google Scholar 

  • Egerton, R. F., and Whelan, M. J. (1974a) Electron energy-loss spectra of diamond, graphite and amorphous carbon. J. Electron Spectrosc. 3, 232–236.

    Article  CAS  Google Scholar 

  • Egerton, R. F., Philip, J. G., and Whelan, M. J. (1974) Applications of energy analysis in a transmission electron microscope. In Electron Microscopy – 1974, 8th Int. Cong., eds. J. V. Sanders and D. J. Goodchild, Australian Academy of Science, Canberra, Vol. 1, pp. 137–140.

    Google Scholar 

  • Ferrell, R. A. (1957) Characteristic energy losses of electrons passing through metal foils. II. Dispersion relation and short wavelength cutoff for plasma oscillations. Phys. Rev. 107, 450–462.

    Article  CAS  Google Scholar 

  • Fitzgerald, A. G., Storey, B. J., and Fabian, D., eds. (1992) Quantitative Microbeam Analysis, Scottish Universities Summer School in Physics, Edinburgh and Institute of Physics Publishing, Bristol and Philadelphia.

    Google Scholar 

  • Geiger, J., Nolting, M., and Schröder, B. (1970) How to obtain high resolution with a Wien filter spectrometer. In Electron Microscopy – 1970, ed. P. Favard, Societé Francaise de Microscopie Electronique, Paris, pp. 111–112.

    Google Scholar 

  • Genç, A., Banerjee, R., Thompson, G. B., Maher, D. M., Johnson, A. W., and Fraser, H. L. (2009) Complementary techniques for the characterization of thin film Ni/Nb multilayers. Ultramicroscopy 10, 1276–1281.

    Article  CAS  Google Scholar 

  • Giannuzzi, L. A., and Stevie, F. A., eds. (2005) Introduction to Focused Ion Beams, Springer, New York, NY.

    Google Scholar 

  • Goldstein, J. I., Newbury, D. E., Echlin, P., Joy, D. C., Romig, A. D., Lyman, C., Fiori, C. E., and Lifshin, E. (2003) Scanning Electron Microscopy and X-Ray Microanalysis, 3rd edition, Springer, New York, NY.

    Google Scholar 

  • Goodhew, P. J. (1984) Specimen Preparation for Transmission Electron Microscopy of Materials, Oxford University Press, New York, NY.

    Google Scholar 

  • Grivet, P., and Septier, A. (1978) Ion microscopy: History and actual trends. Ann. N. Y. Acad. Sci. 306, 158–182.

    Article  CAS  Google Scholar 

  • Hall, T. A. (1979) Biological X-ray microanalysis. J. Microsc. 117, 145–163.

    CAS  Google Scholar 

  • Hawkes, P., and Spence, J. C. H., eds. (2008) Science of Microscopy, Springer, New York, NY.

    Google Scholar 

  • Hembree, G. G., and Venables, J. A. (1992) Nanometer-resolution scanning Auger electron microscopy. Ultramicroscopy 47, 109–120.

    Article  CAS  Google Scholar 

  • Henderson, R. (1995) The potential and limitations of neutrons, electrons and x-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28 171–193.

    Article  CAS  Google Scholar 

  • Henkelman, R. M., and Ottensmeyer, F. P. (1974a) An energy filter for biological electron microscopy. J. Microsc. 102, 79–94.

    CAS  Google Scholar 

  • Hillier, J., and Baker, R. F. (1944) Microanalysis by means of electrons. J. Appl. Phys. 15, 663–675.

    Article  CAS  Google Scholar 

  • Hines, R. L. (1975) Graphite crystal film preparation by cleavage. J. Microsc. 104, 257–261.

    Google Scholar 

  • Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York, NY.

    Google Scholar 

  • Hitchcock, A. P. (1989) Electron-energy-loss-based spectroscopies: A molecular viewpoint. Ultramicroscopy 28, 165–183.

    Article  Google Scholar 

  • Hitchcock, A. P. (1994) Bibliography and data base of inner shell excitation spectra of gas phase atoms and molecules. J. Electron Spectrosc. Relat. Phenom. 67, 1–131.

    Article  CAS  Google Scholar 

  • Howitt, D. (1984) Ion milling of materials science specimens for electron microscopy: A review. J. Electron Microsc. Tech. 1, 405–415.

    Article  CAS  Google Scholar 

  • Hren, J. J., Goldstein, J. I., and Joy, D. C., eds. (1979) Introduction to Analytical Electron Microscopy, Plenum, New York, NY.

    Google Scholar 

  • Ibach, H. (1991) Electron Energy Loss Spectrometers. Springer Series in Optical Sciences, Springer, Berlin, Vol. 63.

    Google Scholar 

  • Ibach, H., and Mills, D. L. (1982) Electron Energy-Loss Spectroscopy and Surface Vibrations, Academic, New York, NY.

    Google Scholar 

  • Johansson, S. A. E. (1984) PIXE summary. Nucl. Instrum. Methods B3, 1–3.

    Google Scholar 

  • Joy, D. C., and Maher, D. M. (1980c) Electron energy-loss spectroscopy. J. Phys. E (Sci. Instrum.) 13, 261–270.

    Article  Google Scholar 

  • Joy, D. C., Newbury, D. E., and Myklebust, R. L. (1982) The role of fast secondary electrons in degrading spatial resolution in the analytical electron microscope. J. Microsc. 128, RP1–RP2.

    Google Scholar 

  • Joy, D. C., Romig, A. D., and Goldstein, J. I., eds. (1986) Principles of Analytical Electron Microscopy, Plenum, New York, NY.

    Google Scholar 

  • Kincaid, B. M., Meixner, A. E., and Platzman, P. M. (1978) Carbon K-edge in graphite measured using electron energy-loss spectroscopy. Phys. Rev. Lett. 40, 1296–1299.

    Article  CAS  Google Scholar 

  • Klemperer, O., and Shepherd, J. P. G. (1963) On the measurement of characteristic energy losses of electrons in metals. Br. J. Appl. Phys. 14, 85–88.

    Article  CAS  Google Scholar 

  • Könenkamp, R., Word, R. C., Rempfer, G. F., Dixon, T., Almaraz, L., and Jones, T. (2010) 5.4-nm spatial resolution in biological photoemission electron microscopy. Ultramicroscopy 110, 899–902.

    Article  CAS  Google Scholar 

  • Krivanek, O. L., Mory, C., Tence, M., and Colliex, C. (1991a) EELS quantification near the single-atom detection level. Microsc. Microanal. Microstruct. 2, 257–267.

    Article  CAS  Google Scholar 

  • Krivanek, O. L., Chisholm, M. F., Nicolosi, V., Pennycook, T. J., Corbin, G. J., Dellby, N., Murfitt, M. F., Own, C. S., Szilagyi, Z. S., Oxley, M. P., Pantelides, S. T., and Pennycook, S. J. (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Hunt, J. A. (1991) Comparison of detection limits for EELS and EDXS. Micros. Microanal. Microstruct. 2, 231–244.

    Article  CAS  Google Scholar 

  • Leapman, R. D., and Newbury, D. E. (1993) Trace element analysis at nanometer spatial resolution by parallel-detection electron energy-loss spectroscopy. Anal. Chem. 13, 2409–2414.

    Article  Google Scholar 

  • Lyman, C. E., Newbury, D. E., Goldstein, J. I., Williams, D. B., Romig, A. D., Armstrong, J. T., Echlin, P., Fiori, C. E., Joy, D. C., Lifshin, E., and Peters, K.-R. (1990) Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy: A Laboratory Workbook, Plenum, New York, NY.

    Google Scholar 

  • Lyman, C. E., Lakis, R. E., and Stenger, H. G. (1995) X-ray emission spectrometry of phase separation in Pt-Rh nanoparticles for nitric oxide reduction. Ultramicroscopy 58, 25–34.

    Article  CAS  Google Scholar 

  • Magee, C. W. (1984) On the use of secondary ion mass spectrometry in semiconductor device materials and process development. Ultramicroscopy 14, 55–64.

    Article  CAS  Google Scholar 

  • Marton, L. (1946) Electron microscopy. Rep. Prog. Phys. 10, 205–252.

    Google Scholar 

  • McCaffrey, J. P. (1993) Improved TEM samples of semiconductors prepared by a small-angle cleavage technique. Microsc. Res. Tech. 24, 180–184.

    Article  CAS  Google Scholar 

  • Midgley, P. A., Saunders, M., Vincent, R., and Steeds, J. W. (1995) Energy-filtered convergent beam diffraction: Examples and future prospects. Ultramicroscopy 59, 1–13.

    Article  CAS  Google Scholar 

  • Miller, M. K. (2000) Atom Probe Tomography: Analysis at the Atomic Level, Springer, New York, NY, 239 p.

    Google Scholar 

  • Miller, M. K., Russell, K. F., Thompson, K., Alvis, R., and Larson, D. J. (2007) Microsc. Microanal. 13, 428–436.

    CAS  Google Scholar 

  • Moharir, A. V., and Prakash, N. (1975) Formvar holey films and nets for electron microscopy. J. Phys. E 8, 288–290.

    Article  CAS  Google Scholar 

  • Nellist, P., and Pennycook, S. J., eds. (2011) Scanning Transmission Electron Microscopy: Imaging and Analysis. Springer, New York, NY. ISBN: 978-1-4419-7199-9

    Google Scholar 

  • Ourmadz, A., Baumann, F. H., Bode, M., and Kim, Y. (1990) Quantitative chemical lattice imaging: Theory and practice. Ultramicroscopy 34, 237–255.

    Article  Google Scholar 

  • Raether, H. (1965) Solid State Excitations by Electrons. Springer Tracts in Modern Physics, Springer, Berlin, Vol. 38, pp. 84–157.

    Google Scholar 

  • Raether, H. (1980) Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, Springer, New York, NY, Vol. 88.

    Google Scholar 

  • Reichelt, R., König, T., and Wangermann, G. (1977) Preparation of microgrids as specimen supports for high resolution electron microscopy. Micron 8, 29–31.

    Google Scholar 

  • Reimer, L., and Kohl, H. (2008) Transmission Electron Microscopy: Physics of Image Formation, 5th edition, Springer, New York, NY.

    Google Scholar 

  • Ritsko, J. J. (1981) Inelastic electron scattering spectroscopy of graphite intercalation compounds. In 39th Ann. Proc. Electron Microsc. Soc. Am., ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, LA, pp. 174–177.

    Google Scholar 

  • Rivière, J. C. (1982) Surface-specific analytical techniques. Philos. Trans. R. Soc. Lond. A305, 545–589.

    Google Scholar 

  • Robinson, B. W., and Graham, J. (1992) Advances in electron microprobe trace-element analysis. J. Comput. Assist. Microsc. 4, 263–265.

    Google Scholar 

  • Rose, H., and Plies, E. (1974) Entwurf eines fehlerarmen magnetishen Energie-Analysators. Optik 40, 336–341.

    Google Scholar 

  • Rudberg, E. (1930) Characteristic energy losses of electrons scattered from incandescent solids. Proc. R. Soc. Lond. A127, 111–140

    Google Scholar 

  • Ruthemann, G. (1941) Diskrete Energieverluste schneller Elektronen in Festkörpern. Naturwissenschaften 29, 648.

    Article  Google Scholar 

  • Schattschneider, P. (1986) Fundamentals of Inelastic Electron Scattering, Springer, Vienna.

    Google Scholar 

  • Schlossmacher, P., Klenov, D. O., Freitag, B., and von Harrach, H. S. (2010) Microsc. Today 18, 14–20.

    Article  CAS  Google Scholar 

  • Schröder, B. (1972) Electron-spectroscopic study of amorphous germanium and silicon films at energy losses below 1 eV. In Electron Microscopy – 1972, ed. V. E. Cosslett. The Institute of Physics, London, pp. 154–155.

    Google Scholar 

  • Shuman, H., Somlyo, A. V., and Somlyo, A. P. (1976) Quantitative electron-probe micro-analysis of biological thin sections: Methods and validity. Ultramicroscopy 1, 317–339.

    Article  CAS  Google Scholar 

  • Shuman, H., Kruit, P., and Somlyo, A. P. (1984) Trace-element quantitation in ELS. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, p. 77.

    Google Scholar 

  • Spence, J. C. H. (2005) Diffractive (lensless) imaging. In Science of Microscopy, eds. P.W. Hawkes and J. C. H. Spence, ,Springer, New York, NY, Vol. 2, pp. 1196–1227.

    Google Scholar 

  • Spence, J. C. H. (2006) Absorption spectroscopy with sub-angstrom beams: ELS in STEM. Rep. Prog. Phys. 69, 725–758.

    Article  CAS  Google Scholar 

  • Spence. J. C. H. (2009) High Resolution Electron Microscopy, Oxford University Press, Oxford.

    Google Scholar 

  • Steeds, J. W. (1984) Electron crystallography. In Quantitative Electron Microscopy, eds. J. N. Chapman and A. J. Craven, SUSSP Publications, Edinburgh, pp. 49–96.

    Google Scholar 

  • Tatlock, G. J., Baxter, A. G., Devenish, R. W., and Hurd, T. J. (1984) EELS analysis of extracted particles from steels. In Analytical Electron Microscopy – 1984, eds. D. B. WIlliams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 227–230.

    Google Scholar 

  • Terauchi, M., Takahashi, H., Handa, N., Murano, T., Koike, M., Kawachi, T., Imazono, T., Koeda, M., Nagano, T., Sasai, H., Oue, Y., Onezawa, Z., and Kuramoto, S. (2010a) Li K-emission measurements using a newly developed SXES-TEM instrument. Microsc. Micronal. 16 (Suppl. 2), 1308–1309.

    Article  CAS  Google Scholar 

  • Tiemeijer, P. C., van Lin, J. H. A., and de Long, A. F. (2001) First results of a monochromatized 200 kV TEM. Microsc. Microanal. 7 (Suppl. 2), 234–235.

    Google Scholar 

  • Timsit, R. S., Hutchinson, J. L., and Thornton, M. C. (1984) Preparation of metal specimens for HREM by ultramicrotomy. Ultramicroscopy 15, 371–374.

    Article  CAS  Google Scholar 

  • Titchmarsh, J. M. (1989) Comparison of high spatial resolution in EDX and EELS analysis. Ultramicroscopy 28, 347–351.

    Article  CAS  Google Scholar 

  • Tucker, D. S., Jenkins, E. J., and Hren, J. J. (1985) Sectioning spherical aluminum oxide particles for transmission electron microscopy. J. Electron Microsc. Tech. 2, 29–33.

    Article  CAS  Google Scholar 

  • Varela, M., Findlay, S. D., Lupini, A. R., Christen, H. M., Borisevich, A. Y., Dellby, N., Krivanek, O. L., Nellist, P. D., Oxley, M. P., Allen, L. J., and Pennycook, S. J. (2004) Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (4 pages).

    Article  CAS  Google Scholar 

  • Wang, Z. L. (1993) Electron reflection, diffraction and imaging of bulk crystal surfaces in TEM and STEM. Rep. Prog. Phys. 56, 997–1065.

    Article  CAS  Google Scholar 

  • Wang, Z. L. (1995) Elastic and Inelastic Scattering in Electron Diffraction and Imaging, Plenum, New York, NY.

    Google Scholar 

  • Wang, Z. L. (1996) Reflection Electron Microscopy and Spectroscopy for Surface Analysis, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Wang, Y., and Nastasi, M. (2010) Handbook of Modern Ion Beam Materials Analysis, Materials Research Society, Warrendale, PA.

    Google Scholar 

  • Watanabe, M., and Williams, D. B. (2006) The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J. Microsc. 221, 89–109.

    Article  CAS  Google Scholar 

  • Watanabe, M., Okunishi, E., and Aoki, T. (2010a) Atomic-level chemical analysis by EELS and XEDS in aberration-corrected scanning transmission electron microscopy. Microsc. Microanal. 16 (Suppl. 2), 66–67.

    Article  CAS  Google Scholar 

  • Watts, J., and Wolstenholme, J. (2005) An Introduction to Surface Analysis by XPS and AES, Wiley, New York, NY.

    Google Scholar 

  • Williams, D. B. (1987) Practical Analytical Electron Microscopy in Materials Science, revised edition, Techbooks, Herndon, VA.

    Google Scholar 

  • Williams, D. B., and Carter, C. B. (2009) Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edition, Springer, New York, NY. ISBN: 978-0-387-76502-0.

    Google Scholar 

  • Wittry, D. B. (1969) An electron spectrometer for use with the transmission electron microscope. Brit. J. Appl. Phys. (J. Phys. D) 2, 1757–1766.

    Google Scholar 

  • Zaluzec, N. J. (1988) A beginner's guide to electron energy loss spectroscopy. EMSA Bull. 16, 58–63 and 72–80.

    Google Scholar 

  • Zewail, A. H., and Thomas, J. M. (2010) 4D Electron Microscopy: Imaging in Space and Time, Imperial College Press, London.

    Google Scholar 

  • Zuo, J. M. (1992) Automatettice parameter measurement from HOLZ lines and their use for the measurement of oxygen content in YBa2Cu3O7-δ from nanometer-sized region. Ultramicroscopy 41, 211–223.

    Article  CAS  Google Scholar 

  • Terauchi, M., Koike, M., Kukushima, K., and Kimura, A. (2010b) Development of wavelength-dispersive soft x-ray emission spectrometers for transmission electron microscopes – an introduction of valence electron spectroscopy for transmission electron microscopy. J. Electron Microsc. 59, 251–261.

    Article  CAS  Google Scholar 

  • Watanabe, M., Kanno, M., and Akunishi, E. (2010b) Atomic-level chemical analysis by EELS and XEDS in aberration-corrected scanning transmission electron microscopy. JEOL News. 45, 8–15.

    Google Scholar 

  • Zaluzec, N. J. (1984) K- and L-shell cross sections for x-ray microanalysis in an AEM. In Analytical Electron Microscopy – 1984, eds. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, CA, pp. 279–284.

    Google Scholar 

  • Brown, L. M. (1997) A synchrotron in a microscope. In Proc. EMAG97 (Cambridge), Inst. Phys. Conf. Ser., Vol. 153, pp. 17–21.

    Google Scholar 

  • Brown, K. L., Belbeoch, R., and Bounin, P. (1964) First- and second-order magnetic optics matrix equations for the midplane of uniform-field wedge magnets. Rev. Sci. Instrum. 35, 481–485.

    Article  Google Scholar 

  • Browne, M. T. (1979) Electron energy analysis in a vacuum generators HB5 STEM. In Scanning Electron Microscopy, SEM Inc., A. M. F. O’Hare, Chicago, IL, Part 2, pp. 827–834.

    Google Scholar 

  • Chen, C. H., Joy, D. C., Chen, H. S., and Hauser, J. J. (1986) Observation of anomalous plasmon linewidth in the icosahedral Al-Mn quasicrystals. Phys. Rev. Lett. 57, 743–746.

    Article  CAS  Google Scholar 

  • Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K. (1970) Optical constants of solids by electron spectroscopy. In Springer Tracts in Modern Physics, Springer, New York, NY, Vol. 54, pp. 78–135.

    Google Scholar 

  • Dexpert, H., Lynch, J. P., and Freund, E. (1982) Sensitivity limits in x-ray emission spectroscopy of catalysts. In Developments in Electron Microscopy and Analysis, Inst. Phys. Conf. Ser. No. 61, I.O.P., Bristol, pp. 171–174.

    Google Scholar 

  • Dravid, V. P., Zhang, H., and Wang, Y. Y. (1993) Inhomogeneity of charge carrier concentration along the grain boundary plane in oxide superconductors. Physica C 213, 353–358.

    Article  CAS  Google Scholar 

  • Fallon, P. J. (1992) Microscopy and Spectroscopy of CVD Diamond, Diamond-Like Carbon and Similar Materials. Ph.D. Thesis, University of Cambridge, Cambridge, UK.

    Google Scholar 

  • Fink, J. (1989) Recent developments in energy-loss spectroscopy. In Advances in Physics and Electron Physics, Academic, London, Vol. 75, pp. 121–232.

    Google Scholar 

  • Fiori, C. E., Gibson, C. C., and Leapman, R. D. (1980) Electrostatic deflection system for use with an electron energy-loss spectrometer. In Microbeam Analysis – 1980, ed. D. B. Wittry, San Francisco Press, San Francisco, CA, pp. 225–228.

    Google Scholar 

  • Batson, P. E. (1992a) Electron energy loss studies in semiconductors. In Transmission Electron Energy Loss Spectrometry in Materials Science, eds. M. M. Disko, C. C. Ahn, and B. Fulz, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 217–240.

    Google Scholar 

  • Goldstein, J. I., Costley, J. L., Lorimer, G. W., and Reed, S. J. B. (1977) Quantitative x-ray analysis in the electron microscope. In Scanning Electron Microscopy, Part 1, pp. 315–324.

    Google Scholar 

  • Gubbens, A. J., Barfels, M., Trevor, C., Twesten, R., Mooney, P., Thomas, P., Menon, N., Kraus, B., Mao, C., and McGinn, B. (2010) The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110, 962–970.

    Article  CAS  Google Scholar 

  • Hawkes, P., ed. (2008) Aberration-corrected electron microscopy. In Advances in Imaging and Electron Physics, Academic, New York, NY, Vol. 153.

    Google Scholar 

  • Ahn, C. C., ed. (2004) Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas, Wiley, New York, NY.

    Google Scholar 

  • Isaacson, M. (1981) All you might want to know about ELS (but were afraid to ask): A tutorial. In Scanning Electron Microscopy, SEM Inc., A. M. F. O'Hare, IL, Part 1, pp. 763–776.

    Google Scholar 

  • Joy, D. C. (1979) The basic principles of electron energy-loss spectroscopy. In Introduction to Analytical Electron Microscopy, Plenum, New York, NY, pp. 223–244.

    Google Scholar 

  • Joy, D. C., and Maher, D. M. (1977) Sensitivity limits for thin specimen x-ray analysis. In Scanning Electron Microscopy, Part 1, pp. 325–334.

    Google Scholar 

  • Katterwe, H. (1972) Object analysis by electron energy spectroscopy in the infra-red region. In Electron Microscopy – 1972, The Institute of Physics, London, pp. 154–155.

    Google Scholar 

  • Kesmodel, L. L. (2006) High-resolution electron energy-loss spectroscopy (HREELS). In Encyclopedia of Surface and Colloid Science, 2nd edition, eds. P. Somasundaran and A. Hubbard, Taylor and Francis.

    Google Scholar 

  • Krivanek, O. L., Gubbens, A. J., and Dellby, N. (1991b) Developments in EELS instrumentation for spectroscopy and imaging.

    Google Scholar 

  • Kruit, P., Shuman, H., and Somlyo, A. P. (1984) Detection of x-rays and electron energy-loss events in time coincidence. Ultramicroscopy 13, 205–214.

    Article  CAS  Google Scholar 

  • Leapman, R. D. (1984) Electron energy-loss microspectroscopy and the characterization of solids. In Electron Beam Interactions with Solids, SEM Inc., A. M. F. O’Hare, IL, pp. 217–233.

    Google Scholar 

  • Levi-Setti, R. (1983) Secondary electron and ion imaging in scanning-ion microscopy. In Scanning Electron Microscopy, SEM, Inc., A. M. F. O'Hare, IL, Part 1, pp. 1–22.

    Google Scholar 

  • Reimer, L., ed. (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, Springer, Heidelberg, Vol. 71.

    Google Scholar 

  • Schattschneider, P., ed. (2010) Linear and Chiral Dichroism in the Electron Microscope, PanStanford Publishing. ISBN 9789814267489.

    Google Scholar 

  • Schmidt, P. F., Fromme, H. G., and Pfefferkorn, G. (1980) LAMMA investigations of biological and medical specimens. In Scanning Electron Microscopy, SEM Inc., A. M. F. O’Hare, IL, Part II, pp. 623–634.

    Google Scholar 

  • Seah, M. P. (1983) A review of quantitative Auger electron spectroscopy. In Scanning Electron Microscopy – 1983, SEM Inc., A. M. F. O'Hare, Chicago, IL, Part II, pp. 521–536.

    Google Scholar 

  • Silcox, J. (1977) Inelastic electron scattering as an analytical tool. In Scanning Electron Microscopy, SEM Inc., A. M. F. O’Hare, IL, Part 1, pp. 393–400.

    Google Scholar 

  • Silcox, J. (1979) Analysis of the electronic structure of solids. In Introduction to Analytical Electron Microscopy, Plenum, New York, NY, pp. 295–304.

    Google Scholar 

  • Spence, J. C. H., and Zuo, J. M. (1992) Electron Microdiffraction, Plenum, New York, NY.

    Google Scholar 

  • Stender, P., Heil, T., Kohl, H., and Schmitz, G. (2009) Quantitative comparison of energy-filtering transmission electron microscopy and atom probe tomography. Ultramicroscopy 109, 612–618.

    Article  CAS  Google Scholar 

  • Zandvliet, H. J. W., and Van Houselt, A. (2009) Scanning tunneling spectroscopy. Ann. Rev. Anal. Chem. 2, 37–55.

    Article  CAS  Google Scholar 

  • Ostyn, K. M., and Carter, C. B. (1982) Effects of ion-beam thinning on the structure of NiO. In Electron Microscopy – 1982, 10th Int. Cong., Deutsche Gesellschaft für Elektronenmikroskopie, Part 1, pp. 191–192.

    Google Scholar 

  • Garratt-Reed, A. J. (1981) Measurement of carbon in V(C, N) precipitates extracted from HSLA steels on aluminum replicas. In Quantitative Microanalysis with High Spatial Resolution, Metals Society, London, pp. 165–168.

    Google Scholar 

  • Krause, M. O., and Oliver, J. H. (1979) Natural widths of atomic K and L levels. J. Phys. Chem. Ref. Data 8, 329–338.

    Article  CAS  Google Scholar 

  • Oleshko,V. P., Murayama, M., and Howe, J. M. (2002) Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the nanoscale. Microsc. Microanal. 8, 350–364.

    Article  CAS  Google Scholar 

  • Garcia de Abajo, F. J. (2010) Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275.

    Article  CAS  Google Scholar 

  • Colliex, C., Cosslett, V. E., Leapman, R. D., and Trebbia, P. (1976a) Contribution of electron energy-loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301–315.

    Article  CAS  Google Scholar 

  • Chan, H. M., and Williams, D. B. (1985) Quantitative analysis of lithium in Al–Li alloys by ionization energy loss spectroscopy. Philos. Mag. B 52, 1019–1032.

    Article  CAS  Google Scholar 

  • Egerton, R. F. (1993) Oscillator-strength parameterization of inner-shell cross sections. Ultramicroscopy 50, 13–28.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.F. Egerton .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Egerton, R. (2011). An Introduction to EELS. In: Electron Energy-Loss Spectroscopy in the Electron Microscope. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9583-4_1

Download citation

Publish with us

Policies and ethics