Skip to main content

Dysrhythmias/Channelopathies and Signaling Pathways

  • Chapter
  • First Online:
Signaling in the Heart
  • 1082 Accesses

Abstract

Cardiac dysrhythmias remain an important cause of morbidity and mortality around the world. Notwithstanding the recent scientific advances in genetic analysis to assign a risk stratification for many of the dysrhythmogenic syndromes, we should take into account the numerous and important epigenetic modifiers/modulator factors, including family history, gender, repolarization abnormalities, and sympathetic tone, each of which may influence disease presentation and severity. Other environmental factors and modulators, such as ethnicity and geographical distribution need to be closely evaluated in assessing causality, and in establishing the specific diagnosis of the rhythm disorder. This can be facilitated not only by monitoring specific cardiac markers, but also by close observation of the pharmacological responses and the electrophysiological phenotypes and analysis of specific signaling pathways affected, i.e., mutations in ankyrin B protein that lead to altered Ca2+ signaling in adult cardiomyocytes resulting in premature ventricular beats as well as mutations in other signaling proteins, providing a significant rationale for dysrhythmia. The use of systems pharmacology linking drug targets, disease genes, and signaling protein interaction networks may allow individualization of therapy, which is particularly critical in establishing drug dosages and efficacy in children and aging patients with dysrhythmias and structural heart defects, a population for which pharmacokinetics has proven to be poorly defined and often unpredictable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz PJ, Moss AJ, Vincent GM, Crampton RS. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993;88:782–4.

    PubMed  CAS  Google Scholar 

  2. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80:795–803.

    PubMed  CAS  Google Scholar 

  3. Wang Q, Shen J, Splawski I, et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 1995;80:805–11.

    PubMed  CAS  Google Scholar 

  4. Bennett PB, Yazawa K, Makita N, George Jr AL. Molecular mechanism for an inherited cardiac arrhythmia. Nature. 1995;376:683–5.

    PubMed  CAS  Google Scholar 

  5. Wang Q, Curran ME, Splawski I, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996;12:17–23.

    PubMed  Google Scholar 

  6. Keating MT, Sanguinetti MC. Molecular and cellular mechanisms of cardiac arrhythmias. Cell. 2001;104:569–80.

    PubMed  CAS  Google Scholar 

  7. Mohler PJ, Schott JJ, Gramolini AO, et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature. 2003;421:634–9.

    PubMed  CAS  Google Scholar 

  8. Splawski I, Tristani-Firouzi M, Lehmann MH, Sanguinetti MC, Keating MT. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat Genet. 1997;17:338–40.

    PubMed  CAS  Google Scholar 

  9. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 1999;97:175–87.

    PubMed  CAS  Google Scholar 

  10. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation. 2000;102:1178–85.

    PubMed  CAS  Google Scholar 

  11. Napolitano C, Priori SG, Schwartz PJ, et al. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA. 2005;294:2975–80.

    PubMed  CAS  Google Scholar 

  12. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA. 2004;292:1341–4.

    PubMed  CAS  Google Scholar 

  13. Tristani-Firouzi M, Jensen JL, Donaldson MR, et al. Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest. 2002;110:381–8.

    PubMed  CAS  Google Scholar 

  14. Splawski I, Timothy KW, Decher N, et al. Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proc Natl Acad Sci USA. 2005;102:8089–96.

    PubMed  CAS  Google Scholar 

  15. Splawski I, Timothy KW, Sharpe LM, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004;119:19–31.

    PubMed  CAS  Google Scholar 

  16. Andersen ED, Krasilnikoff PA, Overvad H. Intermittent muscular weakness, extrasystoles, and multiple developmental anomalies. A new syndrome? Acta Paediatr Scand. 1971;60:559–64.

    PubMed  CAS  Google Scholar 

  17. Bendahhou S, Fournier E, Sternberg D, et al. In vivo and in vitro functional characterization of Andersen’s syndrome mutations. J Physiol. 2005;565:731–41.

    PubMed  CAS  Google Scholar 

  18. Donaldson MR, Yoon G, Fu YH, Ptacek LJ. Andersen-Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med. 2004;36 Suppl 1:92–7.

    PubMed  CAS  Google Scholar 

  19. Leonoudakis D, Conti LR, Radeke CM, McGuire LM, Vandenberg CA. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem. 2004;279:19051–63.

    PubMed  CAS  Google Scholar 

  20. Leonoudakis D, Conti LR, Anderson S, et al. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem. 2004;279:22331–46.

    PubMed  CAS  Google Scholar 

  21. Laverty HG, Wilson JB. Murine CASK is disrupted in a sex-linked cleft palate mouse mutant. Genomics. 1998;53:29–41.

    PubMed  CAS  Google Scholar 

  22. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. Circ Res. 2000;87:160–6.

    PubMed  CAS  Google Scholar 

  23. Caruana G, Bernstein A. Craniofacial dysmorphogenesis including cleft palate in mice with an insertional mutation in the discs large gene. Mol Cell Biol. 2001;21:1475–83.

    PubMed  CAS  Google Scholar 

  24. Mohler PJ, Bennett V. Ankyrin-based cardiac arrhythmias: a new class of channelopathies due to loss of cellular targeting. Curr Opin Cardiol. 2005;20:189–93.

    PubMed  Google Scholar 

  25. Mohler PJ, Davis JQ, Bennett V. Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol. 2005;3:e423.

    PubMed  Google Scholar 

  26. Kline CF, Kurata HT, Hund TJ, et al. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation. Proc Natl Acad Sci USA. 2009;106:16669–74.

    PubMed  CAS  Google Scholar 

  27. Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res. 2009;81:742–9.

    PubMed  CAS  Google Scholar 

  28. Vatta M, Ackerman MJ, Ye B, et al. Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation. 2006;114:2104–12.

    PubMed  CAS  Google Scholar 

  29. Cronk LB, Ye B, Kaku T, et al. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm. 2007;4:161–6.

    PubMed  Google Scholar 

  30. Martinez-Marmol R, Villalonga N, Sole L, et al. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol. 2008;217:667–73.

    PubMed  CAS  Google Scholar 

  31. Ye B, Balijepalli RC, Foell JD, et al. Caveolin-3 associates with and affects the function of hyperpolarization-activated cyclic nucleotide-gated channel 4. Biochemistry. 2008;47:12312–8.

    PubMed  CAS  Google Scholar 

  32. Palygin OA, Pettus JM, Shibata EF. Regulation of caveolar cardiac sodium current by a single Gsalpha histidine residue. Am J Physiol Heart Circ Physiol. 2008;294:H1693–9.

    PubMed  CAS  Google Scholar 

  33. Meadows LS, Isom LL. Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. Cardiovasc Res. 2005;67:448–58.

    PubMed  CAS  Google Scholar 

  34. Yu FH, Westenbroek RE, Silos-Santiago I, et al. Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 2003;23:7577–85.

    PubMed  CAS  Google Scholar 

  35. Medeiros-Domingo A, Kaku T, Tester DJ, et al. SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation. 2007;116:134–42.

    PubMed  Google Scholar 

  36. Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS. Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA. 2007;104:20990–5.

    PubMed  CAS  Google Scholar 

  37. Kurokawa J, Motoike HK, Rao J, Kass RS. Regulatory actions of the A-kinase anchoring protein Yotiao on a heart potassium channel downstream of PKA phosphorylation. Proc Natl Acad Sci USA. 2004;101:16374–8.

    PubMed  CAS  Google Scholar 

  38. Ueda K, Valdivia C, Medeiros-Domingo A, et al. Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA. 2008;105:9355–60.

    PubMed  CAS  Google Scholar 

  39. Miyagoe-Suzuki Y, Takeda SI. Association of neuronal nitric oxide synthase (nNOS) with alpha1-syntrophin at the sarcolemma. Microsc Res Tech. 2001;55:164–70.

    PubMed  CAS  Google Scholar 

  40. Gavillet B, Rougier JS, Domenighetti AA, et al. Cardiac sodium channel Nav1.5 is regulated by a multiprotein complex composed of syntrophins and dystrophin. Circ Res. 2006;99:407–14.

    PubMed  CAS  Google Scholar 

  41. Algra A, Tijssen JG, Roelandt JR, Pool J, Lubsen J. QT interval variables from 24 hour electrocardiography and the two year risk of sudden death. Br Heart J. 1993;70:43–8.

    PubMed  CAS  Google Scholar 

  42. Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology. 2000;94:99–102.

    PubMed  CAS  Google Scholar 

  43. Gaita F, Giustetto C, Bianchi F, et al. Short QT Syndrome: a familial cause of sudden death. Circulation. 2003;108:965–70.

    PubMed  Google Scholar 

  44. Extramiana F, Antzelevitch C. Amplified transmural dispersion of repolarization as the basis for arrhythmogenesis in a canine ventricular-wedge model of short-QT syndrome. Circulation. 2004;110:3661–6.

    PubMed  Google Scholar 

  45. Schimpf R, Wolpert C, Gaita F, Giustetto C, Borggrefe M. Short QT syndrome. Cardiovasc Res. 2005;67:357–66.

    PubMed  CAS  Google Scholar 

  46. Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation. 2004;109:30–5.

    PubMed  CAS  Google Scholar 

  47. Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004;109:2394–7.

    PubMed  Google Scholar 

  48. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005;96:800–7.

    PubMed  CAS  Google Scholar 

  49. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007;115:442–9.

    PubMed  Google Scholar 

  50. Anttonen O, Junttila MJ, Rissanen H, Reunanen A, Viitasalo M, Huikuri HV. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation. 2007;116:714–20.

    PubMed  CAS  Google Scholar 

  51. Giustetto C, Di Monte F, Wolpert C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J. 2006;27:2440–7.

    PubMed  Google Scholar 

  52. Schimpf R, Wolpert C, Bianchi F, et al. Congenital short QT syndrome and implantable cardioverter defibrillator treatment: inherent risk for inappropriate shock delivery. J Cardiovasc Electrophysiol. 2003;14:1273–7.

    PubMed  Google Scholar 

  53. Patel U, Pavri BB. Short QT syndrome: a review. Cardiol Rev. 2009;17:300–3.

    PubMed  Google Scholar 

  54. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20:1391–6.

    PubMed  CAS  Google Scholar 

  55. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm. 2005;2:429–40.

    PubMed  Google Scholar 

  56. Antzelevitch C, Brugada P, Brugada J, et al. Brugada syndrome: a decade of progress. Circ Res. 2002;91:1114–8.

    PubMed  CAS  Google Scholar 

  57. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111:659–70.

    PubMed  Google Scholar 

  58. Sah R, Ramirez RJ, Oudit GY, et al. Regulation of cardiac ­excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol. 2003;546:5–18.

    PubMed  CAS  Google Scholar 

  59. Calloe K, Cordeiro JM, Di Diego JM, et al. A transient outward potassium current activator recapitulates the electrocardiographic manifestations of Brugada syndrome. Cardiovasc Res. 2009;81:686–94.

    PubMed  CAS  Google Scholar 

  60. Fish JM, Antzelevitch C. Role of sodium and calcium channel block in unmasking the Brugada syndrome. Heart Rhythm. 2004;1:210–7.

    PubMed  Google Scholar 

  61. Morita H, Zipes DP, Morita ST, Wu J. Differences in arrhythmogenicity between the canine right ventricular outflow tract and anteroinferior right ventricle in a model of Brugada syndrome. Heart Rhythm. 2007;4:66–74.

    PubMed  Google Scholar 

  62. Shimizu W, Matsuo K, Kokubo Y, et al. Sex hormone and gender difference – role of testosterone on male predominance in Brugada syndrome. J Cardiovasc Electrophysiol. 2007;18:415–21.

    PubMed  Google Scholar 

  63. Morita H, Zipes DP, Wu J. Brugada syndrome: insights of ST ­elevation, arrhythmogenicity, and risk stratification from experimental observations. Heart Rhythm. 2009;6:S34–43.

    PubMed  Google Scholar 

  64. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature. 1998;392:293–6.

    PubMed  CAS  Google Scholar 

  65. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105:1342–7.

    PubMed  Google Scholar 

  66. Tan HL, Bezzina CR, Smits JP, Verkerk AO, Wilde AA. Genetic control of sodium channel function. Cardiovasc Res. 2003;57:961–73.

    PubMed  CAS  Google Scholar 

  67. Abriel H. Roles and regulation of the cardiac sodium channel Na v 1.5: recent insights from experimental studies. Cardiovasc Res. 2007;76:381–9.

    PubMed  CAS  Google Scholar 

  68. Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest. 2008;118:2260–8.

    PubMed  CAS  Google Scholar 

  69. London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation. 2007;116:2260–8.

    PubMed  CAS  Google Scholar 

  70. Mohler PJ, Le Scouarnec S, Denjoy I, et al. Defining the cellular phenotype of “ankyrin-B syndrome” variants: human ANK2 variants associated with clinical phenotypes display a spectrum of activities in cardiomyocytes. Circulation. 2007;115:432–41.

    PubMed  Google Scholar 

  71. Verkerk AO, Wilders R, Schulze-Bahr E, et al. Role of sequence variations in the human ether-a-go-go-related gene (HERG, KCNH2) in the Brugada syndrome. Cardiovasc Res. 2005;68:441–53.

    PubMed  CAS  Google Scholar 

  72. Priori SG, Napolitano C. Genetics of cardiac arrhythmias and sudden cardiac death. Ann N Y Acad Sci. 2004;1015:96–110.

    PubMed  CAS  Google Scholar 

  73. Mohler PJ, Rivolta I, Napolitano C, et al. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci USA. 2004;101:17533–8.

    PubMed  CAS  Google Scholar 

  74. Delpon E, Cordeiro JM, Nunez L, et al. Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol. 2008;1:209–18.

    PubMed  CAS  Google Scholar 

  75. Yokokawa M, Noda T, Okamura H, et al. Comparison of long-term follow-up of electrocardiographic features in Brugada syndrome between the SCN5A-positive probands and the SCN5A-negative probands. Am J Cardiol. 2007;100:649–55.

    PubMed  CAS  Google Scholar 

  76. Smits JP, Eckardt L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol. 2002;40:350–6.

    PubMed  CAS  Google Scholar 

  77. Morita H, Kusano KF, Miura D, et al. Fragmented QRS as a marker of conduction abnormality and a predictor of prognosis of Brugada syndrome. Circulation. 2008;118:1697–704.

    PubMed  Google Scholar 

  78. Morita H, Nagase S, Miura D, et al. Differential effects of cardiac sodium channel mutations on initiation of ventricular arrhythmias in patients with Brugada syndrome. Heart Rhythm. 2009;6:487–92.

    PubMed  Google Scholar 

  79. Frustaci A, Priori SG, Pieroni M, et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation. 2005;112:3680–7.

    PubMed  Google Scholar 

  80. Saffitz JE. Structural heart disease, SCN5A gene mutations, and Brugada syndrome: a complex menage a trois. Circulation. 2005;112:3672–4.

    PubMed  Google Scholar 

  81. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91:1512–9.

    PubMed  CAS  Google Scholar 

  82. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103:196–200.

    PubMed  CAS  Google Scholar 

  83. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.

    PubMed  CAS  Google Scholar 

  84. Swan H, Piippo K, Viitasalo M, et al. Arrhythmic disorder mapped to chromosome 1q42-q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol. 1999;34:2035–42.

    PubMed  CAS  Google Scholar 

  85. Lahat H, Pras E, Olender T, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69:1378–84.

    PubMed  CAS  Google Scholar 

  86. Liu N, Rizzi N, Boveri L, Priori SG. Ryanodine receptor and calsequestrin in arrhythmogenesis: what we have learnt from genetic diseases and transgenic mice. J Mol Cell Cardiol. 2009;46:149–59.

    PubMed  CAS  Google Scholar 

  87. Liu N, Ruan Y, Priori SG. Catecholaminergic polymorphic ventricular tachycardia. Prog Cardiovasc Dis. 2008;51:23–30.

    PubMed  Google Scholar 

  88. Amin AS, Tan HL, Wilde AA. Cardiac ion channels in health and disease. Heart Rhythm. 2010;7:117–26.

    PubMed  Google Scholar 

  89. Bhuiyan ZA, Hamdan MA, Shamsi ET, et al. A novel early onset lethal form of catecholaminergic polymorphic ventricular ­tachycardia maps to chromosome 7p14-p22. J Cardiovasc Electrophysiol. 2007;18:1060–6.

    PubMed  Google Scholar 

  90. Fuster V, Ryden LE, Cannom DS, et al. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation. 2006;114:e257–354.

    PubMed  Google Scholar 

  91. Feinberg WM, Blackshear JL, Laupacis A, Kronmal R, Hart RG. Prevalence, age distribution, and gender of patients with atrial fibrillation. Analysis and implications. Arch Intern Med. 1995;155:469–73.

    PubMed  CAS  Google Scholar 

  92. Brugada R, Tapscott T, Czernuszewicz GZ, et al. Identification of a genetic locus for familial atrial fibrillation. N Engl J Med. 1997;336:905–11.

    PubMed  CAS  Google Scholar 

  93. Ellinor PT, Shin JT, Moore RK, Yoerger DM, MacRae CA. Locus for atrial fibrillation maps to chromosome 6q14-16. Circulation. 2003;107:2880–3.

    PubMed  Google Scholar 

  94. Campuzano O, Brugada R. Genetics of familial atrial fibrillation. Europace. 2009;11:1267–71.

    PubMed  Google Scholar 

  95. Chen YH, Xu SJ, Bendahhou S, et al. KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science. 2003;299:251–4.

    PubMed  CAS  Google Scholar 

  96. Yang Y, Xia M, Jin Q, et al. Identification of a KCNE2 gain-of-function mutation in patients with familial atrial fibrillation. Am J Hum Genet. 2004;75:899–905.

    PubMed  CAS  Google Scholar 

  97. Xia M, Jin Q, Bendahhou S, et al. A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation. Biochem Biophys Res Commun. 2005;332:1012–9.

    PubMed  CAS  Google Scholar 

  98. Zhang DF, Liang B, Lin J, Liu B, Zhou QS, Yang YQ. KCNE3 R53H substitution in familial atrial fibrillation. Chin Med J (Engl). 2005;118:1735–8.

    CAS  Google Scholar 

  99. Olson TM, Alekseev AE, Liu XK, et al. Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Hum Mol Genet. 2006;15:2185–91.

    PubMed  CAS  Google Scholar 

  100. Darbar D, Kannankeril PJ, Donahue BS, et al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation. 2008;117:1927–35.

    PubMed  CAS  Google Scholar 

  101. Tsai CT, Lai LP, Hwang JJ, Lin JL, Chiang FT. Molecular genetics of atrial fibrillation. J Am Coll Cardiol. 2008;52:241–50.

    PubMed  CAS  Google Scholar 

  102. Li Q, Huang H, Liu G, et al. Gain-of-function mutation of Nav1.5 in atrial fibrillation enhances cellular excitability and lowers the threshold for action potential firing. Biochem Biophys Res Commun. 2009;380:132–7.

    PubMed  CAS  Google Scholar 

  103. Hodgson-Zingman DM, Karst ML, Zingman LV, et al. Atrial natriuretic peptide frameshift mutation in familial atrial fibrillation. N Engl J Med. 2008;359:158–65.

    PubMed  CAS  Google Scholar 

  104. Zhang X, Chen S, Yoo S, et al. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell. 2008;135:1017–27.

    PubMed  CAS  Google Scholar 

  105. Lev M, Kinare SG, Pick A. The pathogenesis of atrioventricular block in coronary disease. Circulation. 1970;42:409–25.

    PubMed  CAS  Google Scholar 

  106. Schott JJ, Alshinawi C, Kyndt F, et al. Cardiac conduction defects associate with mutations in SCN5A. Nat Genet. 1999;23:20–1.

    PubMed  CAS  Google Scholar 

  107. Tan HL, Bink-Boelkens MT, Bezzina CR, et al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature. 2001;409:1043–7.

    PubMed  CAS  Google Scholar 

  108. Wang DW, Viswanathan PC, Balser JR, George Jr AL, Benson DW. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation. 2002;105:341–6.

    PubMed  CAS  Google Scholar 

  109. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res. 2003;92:159–68.

    PubMed  CAS  Google Scholar 

  110. Kyndt F, Probst V, Potet F, et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation. 2001;104:3081–6.

    PubMed  CAS  Google Scholar 

  111. Shirai N, Makita N, Sasaki K, et al. A mutant cardiac sodium channel with multiple biophysical defects associated with overlapping clinical features of Brugada syndrome and cardiac conduction disease. Cardiovasc Res. 2002;53:348–54.

    PubMed  CAS  Google Scholar 

  112. Watanabe H, Darbar D, Kaiser DW, et al. Mutations in sodium channel beta1- and beta2-subunits associated with atrial fibrillation. Circ Arrhythm Electrophysiol. 2009;2:268–75.

    PubMed  CAS  Google Scholar 

  113. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest. 2003;112:1019–28.

    PubMed  CAS  Google Scholar 

  114. Ruan Y, Liu N, Priori SG. Sodium channel mutations and arrhythmias. Nat Rev Cardiol. 2009;6:337–48.

    PubMed  CAS  Google Scholar 

  115. Smits JP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol. 2005;38:969–81.

    PubMed  CAS  Google Scholar 

  116. Shi R, Zhang Y, Yang C, et al. The cardiac sodium channel mutation delQKP 1507-1509 is associated with the expanding phenotypic spectrum of LQT3, conduction disorder, dilated cardiomyopathy, and high incidence of youth sudden death. Europace. 2008;10:1329–35.

    PubMed  Google Scholar 

  117. Ge J, Sun A, Paajanen V, et al. Molecular and clinical characterization of a novel SCN5A mutation associated with atrioventricular block and dilated cardiomyopathy. Circ Arrhythm Electrophysiol. 2008;1:83–92.

    PubMed  CAS  Google Scholar 

  118. Lei M, Zhang H, Grace AA, Huang CL. SCN5A and sinoatrial node pacemaker function. Cardiovasc Res. 2007;74:356–65.

    PubMed  CAS  Google Scholar 

  119. Schulze-Bahr E, Neu A, Friederich P, et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest. 2003;111:1537–45.

    PubMed  CAS  Google Scholar 

  120. Ueda K, Nakamura K, Hayashi T, et al. Functional characterization of a trafficking-defective HCN4 mutation, D553N, associated with cardiac arrhythmia. J Biol Chem. 2004;279:27194–8.

    PubMed  CAS  Google Scholar 

  121. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D. Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med. 2006;354:151–7.

    PubMed  CAS  Google Scholar 

  122. Nof E, Luria D, Brass D, et al. Point mutation in the HCN4 cardiac ion channel pore affecting synthesis, trafficking, and functional expression is associated with familial asymptomatic sinus bradycardia. Circulation. 2007;116:463–70.

    PubMed  CAS  Google Scholar 

  123. Beckwith JB. Discussion of the terminology and definition of the sudden infant death syndrome. In: Bergman AB, Beckwith JB, Ray CG, editors. Proceedings of the second international conference on causes of sudden death in infants. Seattle: University of Washington Press; 1970. p. 14–22.

    Google Scholar 

  124. Kinney HC, Thach BT. The sudden infant death syndrome. N Engl J Med. 2009;361:795–805.

    PubMed  CAS  Google Scholar 

  125. Schwartz PJ, Priori SG, Dumaine R, et al. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N Engl J Med. 2000;343:262–7.

    PubMed  CAS  Google Scholar 

  126. Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286:2264–9.

    PubMed  CAS  Google Scholar 

  127. Lupoglazoff JM, Denjoy I, Villain E, et al. Long QT syndrome in neonates: conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations. J Am Coll Cardiol. 2004;43:826–30.

    PubMed  CAS  Google Scholar 

  128. Wolff L, Parkinson J. White, P.D. Bundle brunch block with short P-R interval in healthy young people prone to paroxysmal tachycardia. Am Heart J. 1930;5:683–704.

    Google Scholar 

  129. MacRae CA, Ghaisas N, Kass S, et al. Familial Hypertrophic cardiomyopathy with Wolff-Parkinson-White syndrome maps to a locus on chromosome 7q3. J Clin Invest. 1995;96:1216–20.

    PubMed  CAS  Google Scholar 

  130. Blair E, Redwood C, Ashrafian H, et al. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum Mol Genet. 2001;10:1215–20.

    PubMed  CAS  Google Scholar 

  131. Gollob MH, Green MS, Tang AS, et al. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N Engl J Med. 2001;344:1823–31.

    PubMed  CAS  Google Scholar 

  132. Arad M, Benson DW, Perez-Atayde AR, et al. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest. 2002;109:357–62.

    PubMed  CAS  Google Scholar 

  133. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. 2003;144:5179–83.

    PubMed  CAS  Google Scholar 

  134. Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res. 2007;100:474–88.

    PubMed  CAS  Google Scholar 

  135. Nagata D, Hirata Y. The role of AMP-activated protein kinase in the cardiovascular system. Hypertens Res. 2010;33:22–8.

    PubMed  CAS  Google Scholar 

  136. Nikoskelainen EK, Savontaus ML, Huoponen K, Antila K, Hartiala J. Pre-excitation syndrome in Leber’s hereditary optic neuropathy. Lancet. 1994;344:857–8.

    PubMed  CAS  Google Scholar 

  137. Raben N, Plotz P, Byrne BJ. Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr Mol Med. 2002;2:145–66.

    PubMed  CAS  Google Scholar 

  138. Vaughan CJ, Hom Y, Okin DA, McDermott DA, Lerman BB, Basson CT. Molecular genetic analysis of PRKAG2 in sporadic Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol. 2003;14:263–8.

    PubMed  Google Scholar 

  139. Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev. 2007;87:425–56.

    PubMed  CAS  Google Scholar 

  140. Moss AJ, Zareba W, Schwarz KQ, Rosero S, McNitt S, Robinson JL. Ranolazine shortens repolarization in patients with sustained inward sodium current due to type-3 long-QT syndrome. J Cardiovasc Electrophysiol. 2008;19:1289–93.

    PubMed  Google Scholar 

  141. Tamargo J, Caballero R, Gomez R, Valenzuela C, Delpon E. Pharmacology of cardiac potassium channels. Cardiovasc Res. 2004;62:9–33.

    PubMed  CAS  Google Scholar 

  142. Zhang Y, Xiao J, Wang H, et al. Restoring depressed HERG K+ channel function as a mechanism for insulin treatment of abnormal QT prolongation and associated arrhythmias in diabetic rabbits. Am J Physiol Heart Circ Physiol. 2006;291:H1446–55.

    PubMed  CAS  Google Scholar 

  143. Mangoni ME, Nargeot J. Genesis and regulation of the heart ­automaticity. Physiol Rev. 2005;88:919–82.

    Google Scholar 

  144. Brette F, Leroy J, Le Guennec JY, Salle L. Ca2+ currents in cardiac myocytes: old story, new insights. Prog Biophys Mol Biol. 2006;91:1–82.

    PubMed  CAS  Google Scholar 

  145. Noble D. Unraveling the genetics and mechanisms of cardiac arrhythmia. Proc Natl Acad Sci USA. 2002;99:5755–6.

    PubMed  CAS  Google Scholar 

  146. Roden DM. Taking the “idio” out of “idiosyncratic”: predicting torsades de pointes. Pacing Clin Electrophysiol. 1998;21:1029–34.

    PubMed  CAS  Google Scholar 

  147. Fitzgerald PT, Ackerman MJ. Drug-induced torsades de pointes: the evolving role of pharmacogenetics. Heart Rhythm. 2005;2:S30–7.

    PubMed  Google Scholar 

  148. Sesti F, Abbott GW, Wei J, et al. A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proc Natl Acad Sci USA. 2000;97:10613–8.

    PubMed  CAS  Google Scholar 

  149. Paulussen AD, Gilissen RA, Armstrong M, et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med. 2004;82:182–8.

    PubMed  CAS  Google Scholar 

  150. Aerssens J, Paulussen AD. Pharmacogenomics and acquired long QT syndrome. Pharmacogenomics. 2005;6:259–70.

    PubMed  CAS  Google Scholar 

  151. Bonnet D, Martin D, De Pascale L, et al. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation. 1999;100:2248–53.

    PubMed  CAS  Google Scholar 

  152. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest. 1989;83:927–36.

    PubMed  CAS  Google Scholar 

  153. Stanley CA, Hale DE, Berry GT, Deleeuw S, Boxer J, Bonnefont JP. Brief report: a deficiency of carnitine-acylcarnitine translocase in the inner mitochondrial membrane. N Engl J Med. 1992;327:19–23.

    PubMed  CAS  Google Scholar 

  154. Tripp ME. Developmental cardiac metabolism in health and disease. Pediatr Cardiol. 1989;10:150–8.

    PubMed  CAS  Google Scholar 

  155. Murphy E, Eisner DA. Regulation of intracellular and mitochondrial sodium in health and disease. Circ Res. 2009;104:292–303.

    PubMed  CAS  Google Scholar 

  156. Szewczyk A, Jarmuszkiewicz W, Kunz WS. Mitochondrial potassium channels. IUBMB Life. 2009;61:134–43.

    PubMed  CAS  Google Scholar 

  157. Verdonck F, Volders PG, Vos MA, Sipido KR. Increased Na+ concentration and altered Na/K pump activity in hypertrophied canine ventricular cells. Cardiovasc Res. 2003;57:1035–43.

    PubMed  CAS  Google Scholar 

  158. Bossuyt J, Ai X, Moorman JR, Pogwizd SM, Bers DM. Expression and phosphorylation of the Na-pump regulatory subunit phospholemman in heart failure. Circ Res. 2005;97:558–65.

    PubMed  CAS  Google Scholar 

  159. Sipido KR, Volders PG, Vos MA, Verdonck F. Altered Na/Ca exchange activity in cardiac hypertrophy and heart failure: a new target for therapy? Cardiovasc Res. 2002;53:782–805.

    PubMed  CAS  Google Scholar 

  160. Bers DM, Despa S. Cardiac myocytes Ca2+ and Na+ regulation in normal and failing hearts. J Pharmacol Sci. 2006;100:315–22.

    PubMed  CAS  Google Scholar 

  161. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    PubMed  CAS  Google Scholar 

  162. Facundo HT, Fornazari M, Kowaltowski AJ. Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta. 2006;1762:202–12.

    PubMed  CAS  Google Scholar 

  163. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 2003;93:292–301.

    PubMed  CAS  Google Scholar 

  164. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res. 2006;70:191–9.

    PubMed  Google Scholar 

  165. Gu XQ, Siemen D, Parvez S, et al. Hypoxia increases BK channel activity in the inner mitochondrial membrane. Biochem Biophys Res Commun. 2007;358:311–6.

    PubMed  CAS  Google Scholar 

  166. Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D. Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem. 2008;22:127–36.

    PubMed  CAS  Google Scholar 

  167. Akar FG, Aon MA, Tomaselli GF, O’Rourke B. The mitochondrial origin of postischemic arrhythmias. J Clin Invest. 2005;115:3527–35.

    PubMed  CAS  Google Scholar 

  168. Roden DM. Human genomics and its impact on arrhythmias. Trends Cardiovasc Med. 2004;14:112–6.

    PubMed  CAS  Google Scholar 

  169. Xue T, Cho HC, Akar FG, et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation. 2005;111:11–20.

    PubMed  Google Scholar 

  170. Nattel S, Carlsson L. Innovative approaches to anti-arrhythmic drug therapy. Nat Rev Drug Discov. 2006;5:1034–49.

    PubMed  CAS  Google Scholar 

  171. Telemaque S, Marsh JD. Modification of cardiovascular ion ­channels by gene therapy. Expert Rev Cardiovasc Ther. 2009;7:939–53.

    PubMed  CAS  Google Scholar 

  172. Hajjar RJ, Samulski RJ. Heart failure: a silver bullet to treat heart failure. Gene Ther. 2006;13:997.

    PubMed  CAS  Google Scholar 

  173. Torella D, Indolfi C, Goldspink DF, Ellison GM. Cardiac stem cell-based myocardial regeneration: towards a translational approach. Cardiovasc Hematol Agents Med Chem. 2008;6:53–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Marín-García M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marín-García, J. (2011). Dysrhythmias/Channelopathies and Signaling Pathways. In: Signaling in the Heart. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9461-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9461-5_17

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9460-8

  • Online ISBN: 978-1-4419-9461-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics