Skip to main content

Abstract

A range of bacterial source tracking techniques is grouped under what is commonly referred to as library-dependent methods (LDM). The methods require the construction of a library of known source profiles that are used for comparison with environmental isolates to determine sources of contamination. Development of the library for a particular study requires consideration of many factors including the organism or group of organisms to be used, size of the library, proportionality, representativeness, and library stability. Appropriate performance testing and statistical analysis are critical for confidence in the results. Each method has advantages and disadvantages, and while many have been compared, there is no consensus on a “standard” method or group of methods due to the complexity of the field and range in the scope and goals of studies. Current recommendations include use of a toolbox approach (multiple methods) or limiting costs through use of a tiered, targeted design, initially with monitoring, followed by targeted source tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed W, Neller R, Katouli M (2005) Host species-specific metabolic fingerprint database for Enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl Environ Microbiol 71:4461–4468

    Article  CAS  PubMed  Google Scholar 

  • Ahmed W, Tucker J, Harper J et al (2006) Comparison of the efficacy of an existing versus a locally developed metabolic fingerprint database to identify non-point sources of faecal contamination in a coastal lake. Water Res 40:2339–2348

    Article  CAS  PubMed  Google Scholar 

  • Ahmed W (2007) Limitations of library-dependent microbial source tracking methods. Water: J Aust Water Assoc 34:39–43

    Google Scholar 

  • Ahmed W, Katouli M (2008) Phenotypic variations of enterococci in surface waters: analysis of biochemical fingerprinting data from multi-catchments. J Appl Microbiol 105:452–458

    Article  CAS  PubMed  Google Scholar 

  • Albert JM, Munakata-Marr J, Tenorio L et al (2003) Statistical evaluation of bacterial source tracking data obtained by rep-PCR DNA fingerprinting of Escherichia coli. Environ Sci Tech 37:4554–4560

    Article  CAS  Google Scholar 

  • Anderson KL, Whitlock JE, Harwood VJ (2005) Persistence and differential survival of fecal indicator bacteria in subtropical waters and sediments. Appl Environ Microbiol 71:3041–3048

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Whitlock JE, Harwood VJ (2006) Diversity and distribution of Escherichia coli genotypes and antibiotic resistance phenotypes in feces of humans, cattle, and horses. Appl Environ Microbiol 72:6914–6922

    Article  CAS  PubMed  Google Scholar 

  • Aslam M, Nattress F, Greer G et al (2003) Origin of contamination and genetic diversity of Escherichia coli in beef cattle. Appl Environ Microbiol 69:2794–2799

    Article  CAS  PubMed  Google Scholar 

  • Baldy-Chudzik K, Niedback J, Stosik M (2003) Rep-PCR fingerprinting as a tool for the analysis of genomic diversity in Escherichia coli strains isolated from an aqueous/freshwater environment. Cell Mol Biol Lett 8:793–798

    CAS  PubMed  Google Scholar 

  • Birnbaum D, Herwaldt L, Low DE et al (1994) Efficacy of microbial identification system for epidemiologic typing of coagulase-negative staphylococci. J Clin Microbiol 32:2113–2119

    CAS  PubMed  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H et al (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114

    Article  CAS  Google Scholar 

  • Booth AM, Hagedorn C, Graves AK et al (2003) Sources of fecal pollution in Virginia’s Blackwater River. J Environ Eng 129:547–552

    Article  CAS  Google Scholar 

  • Brownell MJ, Harwood VJ, Kurz RC et al (2007) Confirmation of putative stormwater impact on water quality at a Florida beach by microbial source tracking methods and structure of indicator organism populations. Water Res 41:3747–3757

    Article  CAS  PubMed  Google Scholar 

  • Buchan A, Alber M, Hodson RE (2001) Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S intergenic spacer region. FEMS Microbiol Ecol 35:313–321

    CAS  PubMed  Google Scholar 

  • Burnes BS (2003) Antibiotic resistance analysis of fecal coliforms to determine fecal pollution sources in a mixed-use watershed. Environ Monit Assess 85:87–98

    Article  PubMed  Google Scholar 

  • Burtscher MM, Köllner KE, Sommer R et al (2006) Development of a novel amplified fragment length polymorphism (AFLP) typing method for enterococci isolates from cattle faeces and evaluation of the single versus pooled faecal sampling approach. J Microbiol Methods 67:281–293

    Article  CAS  PubMed  Google Scholar 

  • Carson CA, Shear BL, Ellersieck MR et al (2001) Identification of fecal Escherichia coli from humans and animals by ribotyping. Appl Environ Microbiol 67:1503–1507

    Article  CAS  PubMed  Google Scholar 

  • Carson CA, Shear BL, Ellersieck MR et al (2003) Comparison of ribotyping and repetitive extragenic palindromic-PCR for identification of fecal Escherichia coli from humans and animals. Appl Environ Microbiol 69:1836–1839

    Article  CAS  PubMed  Google Scholar 

  • Casamayor EO, Schafer H, Bañeras L et al (2000) Identification of and spatio-temporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  CAS  PubMed  Google Scholar 

  • Casarez EA, Pillai SD, Mott JB et al (2007) Direct comparison of four bacterial source tracking methods and use of composite data sets. J Appl Microbiol 103:350–364

    Article  CAS  PubMed  Google Scholar 

  • Casarez EA, Pillai DS, Di Giovanni GD (2007) Genotype diversity of Escherichia coli isolates in natural waters determined by PFGE and ERIC-PCR. Water Res 41:3643–3648

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Chu W, Brown J et al (2003) Application of enterococci antibiotic resistance patterns for contamination source identification at Huntington Beach, California. Mar Pollut Bull 46:748–755

    Article  CAS  PubMed  Google Scholar 

  • Clinical Laboratory Standards Institute (2009) Performance standards for antimicrobial disc susceptibility tests. 10th edn, Clinical Laboratory Standards Institute, Wayne PA, USA

    Google Scholar 

  • Clinical Laboratory Standards Institute (2010) Performance standards for antimicrobial testing; sixteenth information supplement. 20th edn, Clinical Laboratory Standards Institute, Wayne PA, USA

    Google Scholar 

  • Dickerson JW Jr, Hagedorn C, Hassall A (2007) Detection and remediation of human-origin pollution at two public beaches in Virginia using multiple source tracking methods. Water Res 41:3758–3770

    Article  CAS  PubMed  Google Scholar 

  • Dicuonzo G, Gherardi G, Lorino G et al (2001) Antibiotic resistance and genotypic characterization by PFGE of clinical and environmental isolates of enterococci. FEMS Microbiol Lett 201:205–211

    Article  CAS  PubMed  Google Scholar 

  • Dombek PE, Johnson LK, Zimmerly ST et al (2000) Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66:2572–2577

    Article  CAS  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified Canola (Brassica napus). Appl Environ Microbiol 69:7310–7318

    Article  CAS  PubMed  Google Scholar 

  • Duran M, Haznedaroğlu BZ, Zitomer DH (2006) Microbial source tracking using host specific FAME profiles of fecal coliforms. Water Res 40:67–74

    Article  CAS  PubMed  Google Scholar 

  • Duran M, Yurtsever D, Dunaev T (2009) Choice of indicator organism and library size considerations for phenotypic microbial source tracking by FAME profiling. Water Sci Tech 60: 2659–2668

    Article  CAS  Google Scholar 

  • Ebdon JE, Taylor HD (2006) Geographical stability of enterococcal antibiotic resistance profiles in Europe and its implications for the identification of fecal sources. Environ Sci Tech 40:5327–5332

    Article  CAS  Google Scholar 

  • Edge TA, Hill S, Stinson G et al. (2007) Experience with the antibiotic resistance analysis and DNA fingerprinting in tracking faecal pollution at two lake beaches. Water Sci Tech 56:51–58

    CAS  Google Scholar 

  • Esseili MA, Kassem II, Sigler V et al (2008) Optimization of DGGE community fingerprinting for characterizing Escherichia coli communities associated with fecal pollution. Water Res 42:4467–4476

    Article  CAS  PubMed  Google Scholar 

  • Farag AM, Goldstein JN, Woodward DF et al (2001) Water quality in three creeks in the backcountry of Grand Teton National Park, USA. J Freshwat Ecol 16:135–143

    Article  CAS  Google Scholar 

  • Farber JM (1996) An introduction to the hows and whys of molecular typing. J Food Prot 59:1091–1101

    CAS  Google Scholar 

  • Farmer JJ, Ejiofor AO, Johnson TL (2003) Discriminant analysis of multiple antibiotic resistance patterns contrasted to carbon utilization profiles in bacterial source tracking in the karstic Duck River watershed of middle Tennessee. In: Abstracts of the 103rd American Society for Microbiology General Meeting Washington, D.C, 2003

    Google Scholar 

  • Farnleitner AH, Kreuzinger N, Kavka GG et al (2000) Simultaneous detection and differentiation of Escherichia coli populations from environmental freshwaters by means of sequence variations in a fragment of the beta-D-glucuronidase gene. Appl Environ Microbiol 66:1340–1346

    Article  CAS  PubMed  Google Scholar 

  • Field KG, Samadpour M (2007) Fecal source tracking, the indicator paradigm, and managing water quality. Water Res 41:3517–3538

    Article  CAS  PubMed  Google Scholar 

  • Fogarty LR, Haack SK, Wolcott MJ et al. (2003) Abundance and characteristics of the recreational water quality indicator bacteria Escherichia coli and enterococci in gull faeces. J Appl Microbiol 94:865–878

    Article  CAS  PubMed  Google Scholar 

  • Geary PM, Davies CM (2003) Bacterial source tracking and shellfish contamination in a coastal catchment. Water Sci Tech 47:95–100

    CAS  Google Scholar 

  • Genthner FJ, James JB, Yates DF et al (2005) Use of composite data sets for source-tracking enterococci in the water column and shoreline interstitial waters on Pensacola Beach, Florida. Mar Pollut Bull 50:724-732

    Article  CAS  PubMed  Google Scholar 

  • Giebel RA, Frendenberg W, Sandrin TR (2008) Characterization of environmental isolates of Enterococcus spp. by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Water Res 42:931–940

    Article  CAS  PubMed  Google Scholar 

  • Gordon DM (2001) Geographical structure and host specificity in bacteria and the implications for tracing the source of coliform contamination. Microbiology 147:1079–1085

    CAS  PubMed  Google Scholar 

  • Graves AK, Hagedorn C, Teetor A et al (2002) Antibiotic resistance profiles to determine sources of fecal contamination in a rural Virginia watershed. J Environ Qual 31:1300–1308

    Article  CAS  PubMed  Google Scholar 

  • Graves AK, Hagedorn C, Brooks A et al (2007) Microbial source tracking in a rural watershed dominated by cattle. Water Res 41:3729–3739

    Article  CAS  PubMed  Google Scholar 

  • Griffith JF, Weisberg SB, McGee CD et al (2003) Evaluation of microbial source tracking methods using mixed fecal sources in aqueous test sample. J Water Health 1:141–151

    PubMed  Google Scholar 

  • Guan S, Xu R, Chen S et al (2002) Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. Appl Environ Microbiol 68: 2690–2698

    Article  CAS  PubMed  Google Scholar 

  • Haack SK, Garchow H, Odelson DA et al (1994) Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60:2483–2493

    CAS  PubMed  Google Scholar 

  • Hagedorn C, Robinson SL, Filtz JR et al (1999) Determining sources of fecal pollution in a rural Virginia watershed with antibiotic resistance patterns in fecal streptococci. Appl Environ Microbiol 65:5522–5531

    CAS  PubMed  Google Scholar 

  • Hagedorn C, Crozier JB, Mentz KA et al (2003) Carbon source utilization profiles as a method to identify sources of faecal pollution in water. J Appl Microbiol 94:792–799

    Article  CAS  PubMed  Google Scholar 

  • Hahm B-K, Maldonado Y, Schreiber E et al (2003) Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Meth 53:387–399

    Article  CAS  Google Scholar 

  • Hansen DL, Ishii S, Sadowsky MJ et al (2009) Escherichia coli populations in Great Lakes waterfowl exhibit spatial stability and temporal shifting. Appl Environ Microbiol 75:1546–1551

    Article  CAS  PubMed  Google Scholar 

  • Hartel PG, Summer JD, Hill JL et al (2002) Geographic variability of Escherichia coli ribotypes from animals in Idaho and Georgia. J Environ Qual 31: 1273–1278

    Article  CAS  PubMed  Google Scholar 

  • Hartel PG, Summer JD, Segars WI (2003) Deer diet affects ribotype diversity of Escherichia coli for bacterial source tracking. Water Res 37:3263–3268

    Article  CAS  PubMed  Google Scholar 

  • Harwood VJ, Whitlock J, Withington V (2000) Classification of antibiotic resistance patterns of indicator bacteria by discriminant analysis: use in predicting the source of fecal contamination in subtropical waters. Appl Environ Microbiol 66:3698–3704

    Article  CAS  PubMed  Google Scholar 

  • Harwood VJ, Wiggins BA, Hagedorn C et al (2003) Phenotypic library-based microbial source tracking methods: efficacy in the California collaborative study. J Water Health 1:153–166

    PubMed  Google Scholar 

  • Hassan WM, Wang SY, Ellender RD (2005) Methods to increase fidelity of repetitive extragenic palindromic PCR fingerprint-based bacterial source tracking efforts. Appl Environ Microbiol 71: 512–518

    Article  CAS  PubMed  Google Scholar 

  • Haznedaroğlu BZ, Zitomer DH, Hughes-Strange GB et al (2005) Whole-cell fatty acid composition of total coliforms to predict sources of fecal contamination. J Environ Eng 131:1426–1432

    Article  CAS  Google Scholar 

  • Hopkins KL, Hilton AC (2000) Methods available for the sub-typing of Escherichia coli O157. World J Microbiol Biotechnol 16:741–748

    Article  Google Scholar 

  • Hulton CS, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genome of Escherichia coli, Salmonella typhimurium and other enteric bacteria. Mol Microbiol 5:825–834

    Article  CAS  PubMed  Google Scholar 

  • Ihrie PD, Farmer JJ, Bailey EC (2003) Use of bacterial antibiotic resistance patterns and carbon source utilization fingerprints to determine sources of enterococcal fecal pollution. In: Abstracts of the 103rd American Society for Microbiology General Meeting Washington, D.C, 2003

    Google Scholar 

  • Jenkins MB, Hartel PG, Olexa TJ et al (2003) Putative temporal variability of Escherichia coli ribotypes from yearling steers. J Environ Qual 32:305–309

    CAS  PubMed  Google Scholar 

  • Jiang SC, Chu W, Olson BH et al (2007) Microbial source tracking in a small southern California urban watershed indicates wild animals and growth as the source of fecal bacteria. Appl Microbiol Biotechnol 76:927–934

    Article  CAS  PubMed  Google Scholar 

  • Johnson JM, Weagant SD, Jinneman KC et al (1995) Use of pulsed-field gel electrophoresis for epidemiological study of Escherichia coli O157:H7 during a food-borne outbreak. Appl Environ Microbiol 61:2806–2808

    CAS  PubMed  Google Scholar 

  • Johnson LK, Brown MB, Carruthers EA et al (2004) Sample size, library composition, and genotypic diversity among natural populations of Escherichia coli from different animals influence accuracy of determining sources of fecal pollution. Appl Environ Microbiol 70:4478–4485

    Article  CAS  PubMed  Google Scholar 

  • Kaneene JB, Miller R, Sayah R et al (2007) Considerations when using discriminant function analysis of antimicrobial resistance profiles to identify sources of fecal contamination of surface water in Michigan. Appl Environ Microbiol 73:2878–2890

    Article  CAS  PubMed  Google Scholar 

  • Kaspar CW, Burgess JL (1990) Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can J Microbiol 36:891–894

    Article  CAS  PubMed  Google Scholar 

  • Kelch WJ, Lee JS (1978) Antibiotic resistance patterns of gram-negative bacteria isolated from envirornmental sources. Appl Environ Microbiol 36:450–456

    CAS  PubMed  Google Scholar 

  • Kelsey RH, Scott GI, Porter DE et al (2003) Using multiple antibiotic resistance and land use characteristics to determine sources of fecal coliform bacterial pollution. Environ Monit Assess 81:337–348

    Article  PubMed  Google Scholar 

  • Kibbey HJ, Hagedorn C, McCoy EL (1978) Use of fecal streptococci as indicators of pollution in soil. Appl Environ Microbiol 35:711–717

    CAS  PubMed  Google Scholar 

  • Knudtson LM, Hartman PA (1993) Antibiotic resistance among enterococcal isolates from environmental and clinical sources. J Food Protect 56:489–492

    CAS  Google Scholar 

  • Kon T, Weir SC, Howell ET et al (2009) Repetitive element (REP)-polymerase chain reaction (PCR) analysis of Escherichia coli isolates from recreational waters of southeastern Lake Huron. Can J Microbiol 55:269–276

    Article  CAS  PubMed  Google Scholar 

  • Konopka A, Oliver L, Turco RF Jr (1998) The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb Ecol 35:103–115

    Article  CAS  PubMed  Google Scholar 

  • Kotilainen P, Huovinen P, Eerola E (1991) Application of gas-liquid chromatographic analysis of cellular fatty acids for species identification and typing of coagulase-negative Staphylococci. J Clin Microbiol 29:315–322

    CAS  PubMed  Google Scholar 

  • Krumperman PH (1983) Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol 46:165–170

    CAS  PubMed  Google Scholar 

  • Kühn I, Albert MJ, Ansaruzzaman M et al (1997) Characterization of Aeromonas spp. isolated from humans with diarrhea, from healthy controls, and from surface water in Bangladesh. J Clin Microbiol 35:369–373

    PubMed  Google Scholar 

  • Lasalde C, Rodriguez R, Toranzos GA (2005) Statistical analyses: possible reasons for unreliability of source tracking efforts. Appl Environ Microbiol 71:4690–4695

    Article  CAS  PubMed  Google Scholar 

  • Lay JO (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194

    Article  CAS  PubMed  Google Scholar 

  • Lefresne G, Latrille E, Irlinger F et al (2004) Repeatability and reproducibility of ribotyping and its computer interpretation. Res Microbiol 155:154–161

    Article  CAS  PubMed  Google Scholar 

  • Leung KT, Mackereth R, Tien Y-C et al (2004) A comparison of AFLP and ERIC-PCR analyses for discriminating Escherichia coli from cattle, pig and human sources. FEMS Microbiol Ecol 47:111–119

    Article  CAS  PubMed  Google Scholar 

  • Lipman L, deNijs A, Lam T et al (1995) Identification of Escherichia coli strains from cows with clinical mastitis by serotyping and DNA polymorphism patterns with REP and ERIC primers. Vet Microbiol 43:13–19

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hume ME, Sternes KL et al (2004) Genetic diversity of Escherichia coli isolates in irrigation water and associated sediments: implications for source tracking. Water Res 38:3899–3908

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Humbert O, Camara A et al (1992) A highly conserved repeated DNA element in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20:3479–3483

    Article  CAS  PubMed  Google Scholar 

  • McDonald JL, Hartel PG, Gentit LC et al (2006) Identifying sources of fecal contamination inexpensively with targeted sampling and bacterial source tracking. J Environ Qual 35:889–897

    Article  CAS  PubMed  Google Scholar 

  • McLellan SL (2004) Genetic diversity of Escherichia coli isolated from urban rivers and beach water. Appl Environ Microbiol 70:4658–4665

    Article  CAS  PubMed  Google Scholar 

  • McLellan SL, Daniels AD, Salmore AK (2001) Clonal Populations of thermotolerant Enterobacteriaceae in recreational water and their potential interference with fecal Escherichia coli counts. Appl Environ Microbiol 67:4934–4938

    Article  CAS  PubMed  Google Scholar 

  • McLellan SL, Daniels AD, Salmore AK (2003) Genetic characterization of Escherichia coli populations from host sources of fecal pollution by using DNA fingerprinting. Appl Environ Microbiol 69:2587–2594

    Article  CAS  PubMed  Google Scholar 

  • Meays CL, Broersma K, Nordin R, Mazumder A (2004) Source tracking fecal bacteria in water: a critical review of current methods. J Environ Manag 73:71–79

    Article  Google Scholar 

  • Mohapatra BR, Broersma K, Nordin R et al (2007) Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. Microbiol Immunol 51:733–740

    CAS  PubMed  Google Scholar 

  • Mohapatra BR, Mazumder A (2008) Comparative efficacy of five different rep-PCR methods to discriminate Escherichia coli populations in aquatic environments. Water Sci Tech 58:537–547

    Article  CAS  Google Scholar 

  • Mohapatra BR, Broersma K, Mazumder A (2008) Differentiation of fecal Escherichia coli from poultry and free-living birds by (GTG)5-PCR genomic fingerprinting. Int J Med Microbiol 298:245–252

    Article  CAS  PubMed  Google Scholar 

  • Molina M (2005) Temporal and spatial variability of fecal indicator bacteria: implications for the application of MST methodologies to differentiate sources of fecal contamination. USEPA, Washington D.C.

    Google Scholar 

  • Moore DF, Harwood VJ, Ferguson DM et al (2005) Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed. J Appl Microbiol 99:618–628

    Article  CAS  PubMed  Google Scholar 

  • Mott J, Lehman R (2005) Bacteria source tracking in Copano Bay. Texas General Land Office, Austin TX, USA

    Google Scholar 

  • Mott JB, Lehman R, Smith A (2008) Bacteria source tracking on the Mission and Aransas Rivers. Publication Number CBBEP-56. Coastal Bend Bays and Estuaries Program, Corpus Christi TX, USA. http://www.cbbep.org/publications/virtuallibrary/0630final.pdf. Accessed May 17, 2010

  • Moussa SH, Massengale RD (2008) Identification of the sources of Escherichia coli in a watershed using carbon-utilization patterns and composite data sets. J Water Health 6:197–207

    Article  PubMed  Google Scholar 

  • Mukwaya GM, Welch DF (1989) Subgrouping of Pseudomonas cepacia by cellular fatty acid composition. J Clin Microbiol 27:2640–2646

    CAS  PubMed  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinder AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Myoda SP, Carson CA, Fuhrmann JJ et al (2003) Comparison of Genotypic Based Microbial Source Tracking Methods Requiring a Host Origin Database. J Water Health 1:167–171

    PubMed  Google Scholar 

  • Nelson M, Jones SH, Edwards C et al (2008) Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. Dis Aquat Org 81:53–63

    Article  CAS  PubMed  Google Scholar 

  • Nübel U, Engelen B, Felske A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Olivas Y, Faulkner BR (2008) Fecal source tracking by antibiotic resistance analysis on a watershed exhibiting low resistance. Environ Monit Assess 139:15–25

    Article  CAS  PubMed  Google Scholar 

  • Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37:1661–1669

    CAS  PubMed  Google Scholar 

  • Parveen S, Murphree RL, Edmiston L et al (1997) Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay. Appl Environ Microbiol 63:2607–2612

    CAS  PubMed  Google Scholar 

  • Parveen S, Portier KM, Robinson K et al (1999) Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl Environ Microbiol 65:3142–3147

    CAS  PubMed  Google Scholar 

  • Parveen S, Hodge NC, Stall RE et al (2001) Phenotypic and genotypic characterization of human and nonhuman Escherichia coli. Water Res 35:379–386

    Article  CAS  PubMed  Google Scholar 

  • Price B, Venso EA, Frana MF et al (2006) Classification tree method for bacterial source tracking with antibiotic resistance analysis data. Appl Environ Microbiol 72:3468–3475

    Article  CAS  PubMed  Google Scholar 

  • Price B, Venso E, Frana M et al (2007) A comparison of ARA and DNA data for microbial source tracking based on source-classification models developed using classification trees. Water Res 41:3575–3584

    Article  CAS  PubMed  Google Scholar 

  • Ritter KJ, Carruthers E, Carson CA et al (2003) Assessment of statistical methods used in library-based approaches to microbial source tracking. J Water Health 1:209–223

    PubMed  Google Scholar 

  • Robinson BJ, Ritter KJ, Ellender RD (2007) A statistical appraisal of disproportional versus proportional microbial source tracking libraries. J Water Health 5:503–509

    Article  PubMed  Google Scholar 

  • Samadpour M, Stewart J, Steingart K et al (2002) Laboratory investigation of an E. coli O157:H7 outbreak associated with swimming in Battle Ground Lake, Vancouver, Washington. J Environ Health 64:16–20

    CAS  PubMed  Google Scholar 

  • Samadpour M, Roberts MC, Kitts C et al (2005) The use of ribotyping and antibiotic resistance patterns for identification of host sources of Escherichia coli strains. Lett Appl Microbiol 40:63–68

    Article  CAS  PubMed  Google Scholar 

  • Santo Domingo JW, Bambic DG, Edge TA et al (2007) Quo vadis source tracking? Towards a strategic framework for environmental monitoring of fecal pollution. Water Res 41:3539–3552

    Article  CAS  PubMed  Google Scholar 

  • Sayah RS, Kaneene JB, Johnson Y et al (2005) Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol 71:1394–1404

    Article  CAS  PubMed  Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities Soil Sci. Soc. Am. J. 64:1659–1668

    Article  CAS  Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  CAS  PubMed  Google Scholar 

  • Scott TM, Rose JB, Jenkins TM et al (2002) Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 68:5796–5803

    Article  CAS  PubMed  Google Scholar 

  • Scott TM, Parveen S, Portier KM et al (2003) Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef, and dairy cattle in Florida. Appl Environ Microbiol 69:1089–1092

    Article  CAS  PubMed  Google Scholar 

  • Scott TM, Caren J, Nelson GR et al (2004) Tracking sources of fecal pollution in a South Carolina watershed by ribotyping Escherichia coli: a case study. Environ Forensics 5:15–19

    Article  CAS  Google Scholar 

  • Seiber JN (2007) New dimensions of food safety and food quality research In: Ohkawa H, Miyagawa H, Lee PW (ed) Pesticide chemistry, crop protection, public health, environmental safety, Wiley-VCH, Germany

    Google Scholar 

  • Seurinck S, Verstraete W, Siciliano SD (2003) Use of 16S-23S rRNA intergenic spacer region PCR and repetitive extragenic palindromic PCR analyses of Escherichia coli isolates to identify nonpoint fecal sources. Appl Environ Microbiol 69:4942–4950

    Article  CAS  PubMed  Google Scholar 

  • Seurinck S, Verstraete W, Siciliano S (2005) Microbial source tracking for identification of fecal pollution. Rev Environ Sci Biotechnol 4:19–37

    Article  CAS  Google Scholar 

  • Seurinck S, Verdievel M, Verstraete W et al (2006) Identification of human fecal pollution sources in a coastal area: a case study at Oostende (Belgium). J Water Health 4:167–175

    CAS  PubMed  Google Scholar 

  • Siegrist TJ, Anderson PD, Huen WH et al (2007) Discrimination and characterization of environmental strains of Escherichia coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). J Microbiol Meth 68:554–562

    Article  CAS  Google Scholar 

  • Sigler V, Pasutti L (2006) Evaluation of denaturing gradient gel electrophoresis to differentiate Escherichia coli populations in secondary environments. Environ Microbiol 8:1703–1711

    Article  CAS  PubMed  Google Scholar 

  • Simpson JM, Santo Domingo JW, Reasoner DJ (2002) Microbial source tracking: state of the science. Environ Sci Tech 36:5279–5288

    Article  CAS  Google Scholar 

  • Smith AK (2009) A comparison between discriminant analysis and Random Forests as techniques to determine sources of fecal contamination in Cedar Lakes, Texas. Thesis, Texas A&M University-Corpus Christi

    Google Scholar 

  • Smith AK, Sterba Boatwright B, Mott, JB (2010) Novel application of a statistical technique, Random Forests, in a bacterial source tracking study. Water Res. doi:10.1016/j.watres.2010.05.019

    Google Scholar 

  • Somarelli JA, Makarewicz JC, Sia R et al (2007) Wildlife identified as major source of Escherichia coli in agriculturally dominated watersheds by BOX A1R-derived genetic fingerprints. J Environ Manag 82:60–65

    Article  CAS  Google Scholar 

  • Stern MJ, Ames GF-L, Smith NH et al (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Stewart J R, Ellender RD, Gooch JA et al (2003) Recommendations for Microbial Source Tracking: Lessons from a Methods Comparison Study. J Water Health 1:225–231

    PubMed  Google Scholar 

  • Stoeckel DM, Mathes MV, Hyer KE et al (2004) Comparison of seven protocols to identify fecal contamination sources using Escherichia coli. Environ Sci Tech 38:6109–6117

    Article  CAS  Google Scholar 

  • Stoeckel DM, Harwood VJ (2007) Performance, design, and analysis in microbial source tracking studies. Appl Environ Microbiol 73:2405–2415

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed  Google Scholar 

  • Swaminathan B, Barrett TJ, Hunter SB et al (2001) PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389

    CAS  PubMed  Google Scholar 

  • Tenover FC, Arbeit RD, Goering RV et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    CAS  PubMed  Google Scholar 

  • Ting WTE, Johnson DS, Holler AM et al (2003) A study of the sources of E. coli contamination oat Marquette Park Beach by random amplified polymorphic DNA typing. In: Abstracts of the 103rd American Society for Microbiology General Meeting Washington, D.C, 2003

    Google Scholar 

  • USEPA (2005) Microbial source tracking guide document. EPA Publication No. EPA/600-R-05-064. USEPA: Cincinnati, OH

    Google Scholar 

  • Van Belkum A, Struelens M, de Visser A et al (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14:547–560

    Article  PubMed  Google Scholar 

  • Venieri D, Vantarakis A, Konminou G et al (2004) Differentiation of faecal Escherichia coli from human and animal sources by random amplified polymorphic DNA-PCR (RAPD-PCR). Water Sci Tech 50:193–198

    CAS  Google Scholar 

  • Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  Google Scholar 

  • Vogel L, van Oorschot E, Maas HME et al (2000) Epidemiologic typing of Escherichia coli using RAPD analysis, ribotyping and serotyping. Clin Microbiol Infect Dis 6:82–87

    Article  CAS  Google Scholar 

  • Vogel JR, Stoeckel DM, Lamendella R et al (2007) Identifying fecal sources in a selected catchment reach using multiple source-tracking tools. J Environ Qual 36:718–729

    Article  CAS  PubMed  Google Scholar 

  • Von Wintzingerode F, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wallis JL, Taylor HD (2004) Phenotypic population characteristics of the enterococci in wastewater and animal faeces: implications for the new European directive on the quality of bathing waters. Water Sci Tech 47:27–32

    Google Scholar 

  • Webster LF, Thompson BC, Fulton MH et al (2004) Identification of sources of Escherichia coli in South Carolina estuaries using antibiotic resistance analysis. J Exp Mar Biol Ecol 298:179–195

    Article  Google Scholar 

  • Welsh J, McClellan M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JE, Jones DT, Harwood VJ (2002) Identification of the sources of fecal coliforms in an urban watershed using antibiotic resistance analysis. Water Res 36:4273–4282

    Article  CAS  PubMed  Google Scholar 

  • Wiggins BA (1996) Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Appl Environ Microbiol 62:3997–4002

    CAS  PubMed  Google Scholar 

  • Wiggins BA, Andrews RW, Conway RA et al (1999) Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl Environ Microbiol 65:3483–3486

    CAS  PubMed  Google Scholar 

  • Wiggins BA, Cash PW, Creamer WS et al (2003) Use of antibiotic resistance analysis for representativeness testing of multiwatershed libraries. Appl Environ Microbiol 69:3399–3405

    Article  CAS  PubMed  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ et al (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  Google Scholar 

  • Wilson JE (2005) The application of antibiotic resistance analysis using Kirby Bauer disk diffusion to determine sources of fecal contamination in Copano Bay, Texas. Thesis, Texas A&M University-Corpus Christi

    Google Scholar 

  • Yan T, Sadowsky M (2007) Determining sources of fecal bacteria in waterways. Environ Monit Assess 129:97–106

    Article  CAS  PubMed  Google Scholar 

  • Yurtsever D, Haznedaroglu BZ, Dunaev T et al (2007) The effects of indicator organism type on phenotypic characterization of host-specificity and the implications for microbial source tracking. Proceedings of the Water Environment Federation, 7063–7071

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Mott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mott, J., Smith, A. (2011). Library-Dependent Source Tracking Methods. In: Hagedorn, C., Blanch, A., Harwood, V. (eds) Microbial Source Tracking: Methods, Applications, and Case Studies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9386-1_3

Download citation

Publish with us

Policies and ethics