Skip to main content

Chemotaxis in Pseudomonads

  • Chapter
Pseudomonas

Abstract

All Pseudomonas species are motile by one or more polar flagella and are highly chemotactic. Chemotaxis and motility have been implicated in virulence in Pseudomonas aeruginosa 21, and are important for plant root associations in Pseudomonas fluorescens 17. The chemotaxis machinery has not been studied in detail in any Pseudomonas species and the range of attractants and environmental conditions to which Pseudomonads can respond behaviorally remains largely unexplored. However, the availability of four Pseudomonas genome sequences has allowed the identification of numerous potential chemotaxis genes. Experiments in P. aeruginosa and Pseudomonas putida indicate that the general chemotaxis machinery present in these organisms is similar to that of the well-studied enteric bacteria Escherichia coli and Salmonella. The vast array of chemotaxis and receptor genes present in the Pseudomonas genomes suggests that chemotaxis may be more complex and sensory transduction may be more versatile in the Pseudomonads than in enteric bacteria. This chapter will focus primarily on the information gleaned from the complete genome sequences of P. aeruginosa PAOl74, P. putida KT244050, Pseudomonas syringae DC3000 (ref. 8a) and the unfinished P. fluorescens PFOl sequences (http://www.jgi.doe.gov/JGI_microbial/html/index.html), correlating available functional data whenever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler J., 1973, A method for measuring chemotaxis and use of the method to determine opti mum conditions for chemotaxis by Escherichia coli. J. Gen. Microbiol, 74:77–91.

    Article  PubMed  CAS  Google Scholar 

  2. Alm R.A. and Mattick J.S., 1997, Genes involved in the biogenesis and function of type-4 fimbriae in Pseudomonas aeruginosa. Gene, 192:89–98.

    Article  PubMed  CAS  Google Scholar 

  3. Armstrong J.B., Adler J., and Dahl M.M., 1967, Nonchemotactic mutants of Escherichia coli. J. Bacteriol, 93:390–398.

    PubMed  CAS  Google Scholar 

  4. Ausmees N., Jonsson H., Hoglund S., Ljunggren H., and Lindberg M., 1999, Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology; 145:1253–1262.

    Article  PubMed  CAS  Google Scholar 

  5. Bespalov V.A., Zhulin I.B., and Taylor B.L., 1996, Behavioral responses of Escherichia coli to changes in redox potential. Proc. Natl. Acad. Sci. USA, 93:10084–10089.

    Article  PubMed  CAS  Google Scholar 

  6. Bhaya D., Takahashi A., and Grossman A.R., 2001, Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803. Proc. Natl Acad. Sci. USA, 98:7540–7545.

    Article  PubMed  CAS  Google Scholar 

  7. Bibikov S.I., Biran R., Rudd K.E., and Parkinson J.S., 1997, A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol, 179:4075–4079.

    PubMed  CAS  Google Scholar 

  8. Brown D.A. and Berg H.C., 1974, Temporal stimulation of chemotaxis in Escherichia coli. Proc. Natl Acad. Sci. USA, 71:1388–1392.

    Article  PubMed  CAS  Google Scholar 

  9. Buell C.R., Joardar V., Lindeberg M., Selengut J., Paulsen L.T., Gwinn M.L., Dodson R.J., Deboy R.T., Durkin A.S., Kolonay J.F., Madupu R., Daugherty S., Brinkac L., Beanan M.J., Haft D.H., Nelson W.C., Davidsen T., Zafar K., Zhou L., Liu J., Yuan Q., Khouri H., Fedorova N., Tran B., Russell D., Berry K., Utterback T., Van Aken S.E., Feldblyum T.V., D’Ascenzo M., Deng W.L., Ramos A.R., Alfano J.R., Cartinhour S., Chatterjee A.K., Delaney T.R., Lazarowitz S.G., Martin G.B., Schneider D.J., Tang X., Bender C.L., White O., Fraser C.M., and Collmer A., 2003, The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA., 100:10181–10186.

    Article  PubMed  CAS  Google Scholar 

  10. Craven R. and Montie T.C., 1985, Regulation of Pseudomonas aeruginosa chemotaxis by the nitrogen source. J. Bacteriol, 164:544–549.

    PubMed  CAS  Google Scholar 

  11. Craven R.C. and Montie T.C., 1983, Chemotaxis of Pseudomonas aeruginosa: Involvement of methylation. J. Bacteriol, 154:780–786.

    PubMed  CAS  Google Scholar 

  12. D’Argenio D.A., Calfee M.W., Rainey P.B., and Pesci E.G., 2002, Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol, 184:6481–6489.

    Article  PubMed  Google Scholar 

  13. D’Argenio D.A., Gallagher L.A., Berg C.A., and Manoil C., 2001, Drosophila as a model host for Pseudomonas aeruginosa infection. J. Bacteriol, 183:1466–1471.

    Article  PubMed  Google Scholar 

  14. Darzins A., 1994, Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: Sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol. Microbiol., 11:137–153.

    Article  PubMed  CAS  Google Scholar 

  15. Darzins A., 1993, The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY J. Bacterial, 175:5934–5944.

    CAS  Google Scholar 

  16. Darzins A., 1995, The Pseudomonas aeruginosa pilK gene encodes a chemotactic methyltransferase (CheR) homologue that is translationally regulated. Mol. Microbiol, 15: 703–717.

    Article  PubMed  CAS  Google Scholar 

  17. Darzins A., and Russell M. A., 1997. Molecular genetic analysis of type-4 pilus biogenesis and twitching motility using Pseudomonas aeruginosa as a model system—a review. Gene, 192:109–115.

    Article  PubMed  CAS  Google Scholar 

  18. de Weert S., Vermeiren H., Mulders I.H., Kuiper I., Hendrickx N., Bloemberg N., Vanderleyden J., De Mot R., and Lugtenberg B.J., 2002, Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol. Plant Microbe Interact., 15:1173–1180.

    Article  PubMed  Google Scholar 

  19. Ditty J.L., Grimm A.C., and Harwood C.S., 1998, Identification of a chemotaxis gene region from Pseudomonas putida. FEMS Microbiol. Lett, 159:267–273.

    Article  PubMed  CAS  Google Scholar 

  20. Ditty J.L. and Harwood C.S., 2002, Charged amino acids conserved in the aromatic acid/H+ symporter family of permeases are required for 4-hydroxybenzoate transport by PcaK from Pseudomonas putida. J. Bacteriol, 184:1444–1448.

    Article  PubMed  CAS  Google Scholar 

  21. Ditty J.L. and Harwood C.S., 1999, Conserved cytoplasmic loops are important for both the transport and chemotaxis functions of PcaK, a protein from Pseudomonas putida with 12-membrane-spanning regions. J. Bacteriol, 181:5068–5074

    PubMed  CAS  Google Scholar 

  22. Drake D. and Montie T.C., 1988, Flagella, motility, and invasive virulence of Pseudomonas aeruginosa. J. Gen. Microbiol, 134:43–52.

    PubMed  CAS  Google Scholar 

  23. Feng X., Baumgartner J.W., and Hazelbauer G.L., 1997, High-and low-abundance chemoreceptors in Escherichia coli: Differential activities associated with closely related cytoplasmic domains. J. Bacteriol, 179:6714–6720.

    PubMed  CAS  Google Scholar 

  24. Ferrández. A., Hawkins A.C., and Harwood C.S., Unpublished data.

    Google Scholar 

  25. Ferrández A., Hawkins A.C., Summerfield D.T., and Harwood C.S., 2002, Cluster II genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J. Bacteriol, 184:4374–4383.

    Article  PubMed  Google Scholar 

  26. Fredrick K.L. and Hermann J.D., 1994, Dual chemotaxis sigalling pathways in Bacillus subtilis: A sigma D-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J. Bacteriol., 176:2727–2735.

    PubMed  CAS  Google Scholar 

  27. Galibert F., Finan. T.M., Long S.R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M.J., Becker A., Boistard P., Bothe G., Boutry M., Bowser L., Buhrmester J., Cadieu E., Capela D., Chain P., Cowie A., Davis R.W., Dreano S., Federspiel NA., Fisher R.F., Gloux S., Godrie T., Goffeau A., Golding B., Gouzy J., Gurjal M., Hernandez-Lucas I., Hong A., Huizar L., Hyman R.W., Jones T., Kahn D., Kahn M.L., Kaiman S., Keating D.H., Kiss E., Komp C., Lelaure V., Masuy D., Palm C., Peck M.C., Pohl T.M., Porteteile D., Purnelle B., Ramsperger U., Surzycki R., Thebault P., Vandenbol M., Vorholter F.J., Weidner S., Wells D.H., Wong K.-K., Yeh K.C., and Batut J., 2001, The composite genome of the legume symbiont SinaRhizobium meliloti. Science, 293:668–672.

    Article  PubMed  CAS  Google Scholar 

  28. Gosink K.K., Kobayashi R., Kawagishi L., and Hase C.C., 2002, Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholera. J. Bacteriol, 184:1767–1771.

    Article  PubMed  CAS  Google Scholar 

  29. Grimm A.C. and Harwood C.S., 1997, Chemotaxis of Pseudomonas putida to the polyaro-matic hydrocarbon naphthalene. Appl Environ. Microbiol., 63:4111–4115.

    PubMed  CAS  Google Scholar 

  30. Grimm A.C. and Harwood C.S., 1999, NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol., 181:3310–3316.

    PubMed  CAS  Google Scholar 

  31. Harwood C.S., 1989, A methyl-accepting protein is involved in benzoate taxis in Pseudomonas putida. J. Bacteriol, 171:4603–4608.

    PubMed  CAS  Google Scholar 

  32. Harwood C.S., Fosnaugh K., and Dispensa M., 1989, Flagellation of Pseudomonas putida and analysis of its motile behavior. J. Bacterial, 171:4063–4066.

    CAS  Google Scholar 

  33. Harwood C.S., Nichols N.N., Kim M.-K., Ditty J.L., and Parales R.E., 1994, Identification of the pcaRKF gene cluster from Pseudomonas putida: Involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol, 176:6479–6488.

    PubMed  CAS  Google Scholar 

  34. Harwood C.S., Parales R.E., and Dispensa M., 1990, Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Appl. Environ. Microbiol, 56:1501–1503.

    PubMed  CAS  Google Scholar 

  35. Harwood CS, Rivelli M, and Ornston L.N, 1984, Aromatic acids are chemoattractants for Pseudomonas putida. J. Bacterial, 160:622–628.

    CAS  Google Scholar 

  36. Hawkins A.C., Alvarez-Ortega C., Schuster M., Tifrea D., and Harwood C.S., 2003, Presented at the 103rd General Meeting of the American Society for Microbiology, Washington, DC.

    Google Scholar 

  37. Hecht G.B. and Newton A., 1995, Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol., 177:6223–6229.

    PubMed  CAS  Google Scholar 

  38. Karatan E., Saulmon M.M., Bunn M.W., and Ordal G.W., 2001, Phosphorylation of the response regulator CheV is required for adaptation to attractants during Bacillus subtilis chemotaxis. J. Biol. Chem., 276:43618–43626.

    Article  PubMed  CAS  Google Scholar 

  39. Kato J., Ito A., Nikata T., and Ohtake H., 1992, Phosphate taxis in Pseudomonas aeruginosa. J. Bacteriol. 174:5149–5151.

    PubMed  CAS  Google Scholar 

  40. Kato J., Nakamura T., Kuroda A., and Ohtake H., 1999, Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 63: 155–161.

    Article  PubMed  CAS  Google Scholar 

  41. Kearns D.B., Robinson J., and Shimkets L.J., 2001, Pseudomonas aeruginosa exhibits directed twitching motility up phosphatidylethanolamine gradients. J. Bacteriol, 183:763–767.

    Article  PubMed  CAS  Google Scholar 

  42. Kelly-Wintenberg K. and Montie T.C., 1994, Chemotaxis to oligopeptides by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 60:363–367.

    PubMed  CAS  Google Scholar 

  43. Kirby J.R. and Zusman D.R, 2003, Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA, 100:2008–2013.

    Article  PubMed  CAS  Google Scholar 

  44. Kuroda A., Kumano T., Taguchi K., Nikata T., Kato J., and Ohtake H., 1995, Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa. J. Bacteriol., 177:7019–7025.

    PubMed  CAS  Google Scholar 

  45. Madsduki A., Nakamura J., Ohga T., Umezaki R., Kato J., and Ohtake H., 1995, Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. J. Bacteriol., 177:948–952.

    Google Scholar 

  46. Mattick J.S., 2002, Type IV pili and twitching motility. Annu. Rev. Microbiol., 56:298–314.

    Article  Google Scholar 

  47. Mazumder R., Phelos T.J., Krieg N.R., and Benoit R.E., 1999, Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay. J. Microbiol. Meth., 37:255–263.

    Article  CAS  Google Scholar 

  48. Meyer G., Schneider-Merck T., Böhme S., and Sand W., 2002, A simple method for investigations on the chemotaxis of Acidithiobacillis ferrooxidans and Desulfovibrio vulgaris. Acta Biotechnol., 22:391–399.

    Article  CAS  Google Scholar 

  49. Moench T.T. and Konetzka W.A., 1978, Chemotaxis in Pseudomonas aeruginosa. J. Bacteriol, 133:427–429.

    PubMed  CAS  Google Scholar 

  50. Moulton R.C. and Montie T.C., 1979, Chemotaxis by Pseudomonas aeruginosa. J. Bacteriol., 137:274–280.

    PubMed  CAS  Google Scholar 

  51. Nelson K.E., Weinel C., Paulsen I.T., Dodsen R.J., Hilbert H., Martins dos Santos V.A.P., Fouts D.E., Gill S.R., Pop M., Holmes M., Brinkac L., Beanan M., DeBoy R.T., Daugherty S., Kotonay J., Madupu R., Nelson W., White O., Peterson J., Khouri H., Hance I., Chris Lee P., Holtzapple E., Scanlan D., Tran K., Moazzez A., Utterback T., Rizzo M., Lee K., Kosack D., Moestl D., Wedler H., Lauber J., Stjepandic D., Hoheisel J., Straetz M., Heim S., Kiewitz C., Eisen J., Timmis K.N., Düsterhöft A., Tümmler B., and Fraser C. 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol, 4:799–808.

    Article  PubMed  CAS  Google Scholar 

  52. Nichols N.N. and Harwood C.S., 2000, An aerotaxis transducer gene from Pseudomonas putida. FEMS Microbiol Lett., 182:177–183.

    Article  PubMed  CAS  Google Scholar 

  53. Nichols N.N. and Harwood C.S., 1997, PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol., 179:5056–5061.

    PubMed  CAS  Google Scholar 

  54. Nierman W.C., Feldblyum T.V., Laub M.T., Paulsen I.T., Nelson, K.E., Eisen J.A., Heidelberg J.E., Alley M.R., Ohta N., Maddock J.R., Potocka I., Nelson W.C., Newton A., Stephens C., Phadke N.D., Ely B., DeBoy R.T., Dodson R.J., Durkin A.S., Gwinn M.L., Haft D.H., Kolonay J.F., Smit J., Craven M.B., Khouri I.L., Shetty J., Berry K., Utterback T., Tran K., Wolf A., Vamathevan I., Ermolaeva M., White O., Salzberg S.L., Venter J.C., Shapiro L., Fraser C.M., and Eisen I., 2001, Complete genome sequence of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA, 98:4136–4141.

    Article  PubMed  CAS  Google Scholar 

  55. O’Toole. G.A. and Kolter R., 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm formation. Mol Microbiol., 30:295–304.

    Article  PubMed  Google Scholar 

  56. Ohga T., Masduki A., Kato J.. and Ohtake H., 1993, Chemotaxis away from thiocyanate and isothiocyanate esters in Pseudomoans aeruginosa. FEMS Microbiol Lett., 113:63–66.

    Article  PubMed  CAS  Google Scholar 

  57. Parales R.E., Ditty. J.L.. and Harwood C.S., 2000, Toluene-degrading bacteria are chemotactic to the environmental pollutants benzene, toluene, and trichloroethylene. Appt. Environ. Microbiol., 66:4098–4104.

    Article  CAS  Google Scholar 

  58. Parales R.E. and Harwood C.S., Unpublished data.

    Google Scholar 

  59. Pei J. and Grishin N.V., 2001, GGDEF domain is homologous to adenylyl cyclase. Proteins, 42:210–216.

    Article  PubMed  CAS  Google Scholar 

  60. Porter S.X. and Armitage J.P., 2002, Phosphoteansfer in Rhodobacter sphaeroides chemotaxis. 324:35–45.

    CAS  Google Scholar 

  61. Porter S.L., Warren A.V., Martin A.C., and Armitage J.P., 2002, The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol. Microbiol., 46:1081–1094.

    Article  PubMed  CAS  Google Scholar 

  62. Repik A., Rebbapragada A., Johnson M.S., Haznedar J.O., Zhulin I.B., and Taylor B.L., 2000, PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol., 36:806–816.

    Article  PubMed  CAS  Google Scholar 

  63. Römling U., Rohde M., Olsén A., Normark S., and Reinköster J., 2000, AgtD, the check-point of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol, 36:10–23.

    Article  PubMed  Google Scholar 

  64. Schuster M., Lostroh C.P., Ogi T., and Greenberg E.P., 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: A transcriptome analysis. J. Bacteriol., 185:2066–2079.

    Article  PubMed  CAS  Google Scholar 

  65. Shah D.S.Ft., Porter S.L., Martin A.C., Hamblin P.A., and Armitage J.P., 2000, Fine tuning bacterial chemotaxis: Analysis of Rhodobacter sphaeroides behaviour under aerobic and anaerobic conditions by mutation of the major chemotaxis operons and cheY genes. EMBO J., 19:4601–4613.

    Article  PubMed  CAS  Google Scholar 

  66. Shioi J., Dang C.V., and Taylor, B.L., 1987, Oxygen as attractant and repellent in bacterial chemotaxis. J. Bacteriol., 169:3118–3123.

    PubMed  CAS  Google Scholar 

  67. Shuster M., Hawkins A.C., Harwood C.S., and Greenberg E.P., 2004, The Pseudomonas aeruginosa RpoS regulon and its relationship to quorum sensing. Mol. Microbiol., (in press).

    Google Scholar 

  68. Singh T. and Arora D.K., 2001, Motility and chemotactic response of Pseudomonas fluorescens toward chemoatfractants present in the exudate of Macrophominaphaseolina. Microbiol Res., 156:343–351.

    Article  PubMed  CAS  Google Scholar 

  69. Sourjik V. and Schmitt R., 1996, Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti. Mol. Microbiol, 22:427–436.

    Article  PubMed  CAS  Google Scholar 

  70. Sourjik Y. and Schmitt R., 1998, Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry, 37:2327–2335.

    Article  PubMed  CAS  Google Scholar 

  71. Spiers A.J., Kahn S.G., Bohannon J., Travisano M., and Rainey P.B., 2002, Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Genetics, 161:33–46.

    PubMed  CAS  Google Scholar 

  72. Spudich J.L. and Koshland D.E.J, 1975, Quantitation of the sensory response in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA, 72:710–713.

    Article  PubMed  CAS  Google Scholar 

  73. Stock A.M., Robinson V.L., and Goudreau P.N., 2000, Two-component signal transduction. Annu. Rev. Biochem., 69:183–215.

    Article  PubMed  CAS  Google Scholar 

  74. Stock J.B. and Surette M.G., 1996, Chemotaxis. In EC Neidhardt (ed.), Escherichia coli and Salmonella cellular and molecular biology, pp. 1103–1129. ASM Press Washington, DC.

    Google Scholar 

  75. Stover C.K., Pham X.Q., Erwin A.L., Mizoguchi S.D., Warrener P., Hickey M.J., Brinkman F.S., Hufhagle W.O., Kowalik D.J., Lagrou M., Garber R.L., Goltry L., Tolentino E., Westbrock-Wadman S., Yuan Y., Brody L.L., Coulter S.N., Folger K.R., Kas A., Larbig K., Lim R., Smith K., Spencer D., Wong G.K., Wu Z., Paulsen L.T., Reizer J., Saier M.H., Hancock R.E., Lory S., and Olson M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  76. Taguchi K., Fukatomi H., Kuroda A., Kato J., and Ohtake H., 1997, Genetic identification of chemotactic transducers for amino acids in Pseudomonas aeruginosa. Microbiology, 143:3223–3229.

    Article  PubMed  CAS  Google Scholar 

  77. Taylor B.L. and Zhulin L.B., 1999, PAS domains: Internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev., 63:479–506.

    PubMed  CAS  Google Scholar 

  78. Tsai J.W. and Alley M.R., 2001, Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway. J. Bacteriol., 183:5001–5007.

    Article  PubMed  CAS  Google Scholar 

  79. van Beilen J.B., Panke S., Lucchini S., Franchini A.G., Röthlisberger M., and Witholt B., 2001, Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion Sequences: Evolution and regulation of the alk genes. Microbiology, 147:1621–1630.

    PubMed  Google Scholar 

  80. Ward M.J., Mok K.C., and Zusman D.R., 1998, Myxococcus xanthus dispays Frz-dependent chemokinetic behavior during vegetative swarming. J. Bacteriol, 180:440–443.

    PubMed  CAS  Google Scholar 

  81. Ward M.J. and Zusman D.R., 1999, Motility in Myxococcus xanthus and its role in developmental aggregation. Curr. Opin. Microbiol., 2:624–629.

    Article  PubMed  CAS  Google Scholar 

  82. Ward M.J. and Zusman D.R., 1997, Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol., 24:885–893.

    Article  PubMed  CAS  Google Scholar 

  83. Watson A.A., Alm R.A., and Mattick J.S., 1996, Identification of a gene,pilF, required for type 4 fimbrial biogenesis and twitching motility in Pseudomonas aeruginosa. Gene, 180:49–56.

    Article  PubMed  CAS  Google Scholar 

  84. Wu H., Kato J., Kuroda A., Ikeda T., Takiguchi N., and Ohtake H., 2000, Identification and characterization of two chemotactic transducers for inorganic phosphate in Pseudomonas aeruginosa. J. Bacteriol., 182:3400–3404.

    Article  PubMed  CAS  Google Scholar 

  85. Yu H. S. and Alam M., 1997, An agarose-in-plug bridge method to study chemotaxis in the Archaeon Halobacterium salinarum. FEMS Microbiol. Lett., 156:265–269.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parales, R.E., Ferrández, A., Harwood, C.S. (2004). Chemotaxis in Pseudomonads. In: Ramos, JL. (eds) Pseudomonas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9086-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9086-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4788-0

  • Online ISBN: 978-1-4419-9086-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics