Skip to main content

The OCTN2 carnitine transporter and fatty acid oxidation

  • Chapter
Membrane Transporter Diseases

Abstract

Carnitine (3-hydroxy -4-trimethylammonium butyrate) is a hydrophilic molecule that plays an essential role in the transfer of long-chain fatty acids into mitochondria for β-oxidation (Scaglia and Longo 1999). Carnitine also binds acyl residues and helps in their elimination. This decreases the number of acyl residues conjugated with Coenzyme A (CoA) and increases the ratio between free and acylated CoA (Bieber 1988). Less defined functions of carnitine include the shuttling of fatty acids between different intracellular organelle s (peroxisomes, microsomes, and mitochondria) involved in fatty acid metabolism (Bieber 1988). Carnitine deficiency has been known for several years in humans, but the difference between primary and secondary carnitine deficiency has only been fully defined in recent years. This chapter will review the structure and function of the OCTN2 carnitine transporter defective in primary carnitine deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bieber, L.L. (1988). Carnitine. Annu. Rev. Biochem., 57, 261–283.

    Article  PubMed  CAS  Google Scholar 

  • Borum, P.R. (1995). Carnitine in Neonatal Nutrition. J. Child Neurol 10(Suppl. 2), 2S25–2S31.

    Google Scholar 

  • Burwinkel, B., Kreuder, J., Schweitzer, S., Vorgerd, M., Gempel, K., Gerbitz, K.D., et al. (1999). Carnitine Tran sporter OCTN2 Mutations in Systemic Primary Carnitine Deficiency: A Novel Argl69Gln Mutation and a Recurrent Arg282ter Mutation Associated with an Unconventional Splicing Abnormality. Biochem. Biophys. Res. Commun., 161, 484–487.

    Article  Google Scholar 

  • Cederbaum, S., Dipple, K, Vilain, E., Miller, M., Koo-McCoy, S., Hsu, B.Y.L., et al. (2000). Clinical Follow-up and Molecular Etiology of the Original Case of Carnitine Tran sporter Deficiency. J. Inherit. Metab. Dis., 23(Suppl. 1), 119 (Abstract 237-0).

    Google Scholar 

  • Christensen, E., Holm, J., Hansen, S.H., Sorensen, N., Nezu, J., Tsuji, A., et al. (2000). Sudden Infant Death Following Pivampicillin Treatment in a Patient with Carnitine Tran sporter Deficiency. J. Inherit. Metab. Dis., 23(Suppl. 1), 117 (Abstract 234-P).

    Google Scholar 

  • Christiansen, R.Z. and Bremer, J. (1976). Active Transport of Butyrobetaine and Carnitine into Isolated Liver Cells. Biochim. Biophys. Acta, 448, 562–77.

    Article  PubMed  CAS  Google Scholar 

  • Christodoulou, J., Teo, S.H., Hammond, J., Sim, K.G., Hsu, B.Y, Stanley, C.A., et al. (1996). First Prenatal Diagnosis of the Carnitine Transporte r Defect. Am. J. Med. Genet., 66, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Duran, J.M., Peral, M.J., Calonge, M.L., and Ilundiin, A.A. (2002). Functional Characterization of Intestinal L-Carnitine Transport. J. Membr. Biol., 185, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Enomoto, A., Wempe, M.E, Tsuchida, H., Shin, H.J., Cha, S.H., Anzai, N., et al. (2002). Molecular Identification of a Novel Carnitine Transporter Specific to Human Test is: Insights into the Mechanism of Carnitine Recognition. J. Biol. Chem 277, 36262–36271.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi, M., Kobayashi, K., Tomomura, M., Kuwajima, M., Imamura, Y., Koizumi, T., et al. (1992). Carnitine Administration to Juvenile Visceral Steatosis Mice Corrects the Suppressed Expression of Urea Cycle Enzymes by Normalizing their Transcription. J. Biol. Chem., 267, 5032–5035.

    PubMed  CAS  Google Scholar 

  • Koizumi, T., Nikaido, H., Hayakawa, J., Nonomura, A., and Yoneda, T. (1988). Infantile Disease with Microvesicular Fatty Infiltration of Viscera Spontaneously Occurring in the C3H-H-2(0) Strain of Mouse with Similarities to Reye’ s Syndrome. Lab. Anim., 122, 83–87.

    Article  Google Scholar 

  • Koizumi, A., Nozaki, J., Ohura, T., Kayo, T., Wada, Y., Nezu, J. et al. (1999). Genetic Epidemiology of the Carnitine Transporter OCTN2 Gene in a Japanese Population and Phenotypic Characterization in Japane se Pedigree s with Primary Systemic Carnitine Deficiency. Hum. Mol. Genet., 8, 2247–2254.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, M., Kono, N., Horiuchi, M., Imamura, Y., Ono, A., Inui, Y., et al. (1991). Animal Model of Systemic Carnitine Deficiency: Analy sis in C3H-H-2 Degrees Strain of Mouse Associated with Juvenile Visceral Steatosis. Biochem. Biophys. Res. Commun., 174, 1090–1094.

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima, M., Lu, K., Harashima, H., Ono, A., Sato, I., Mizuno, A. et al. (1996). Carnitine Transport Defect in Fibroblasts of Juvenile Visceral Steatosis (JVS) Mouse. Biochem. Biophys. Res. Commun., 223, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Lahjouji, K., Elimrani, I., Wu, J., Mitchell, G.A., and

    Google Scholar 

  • Qureshi, L.A. (2002). A Heterozygote Phenotype Is Present in the jvs + / — Mutant Mouse Livers. Mol. Genet. Metab., 76, 76–80.

    Article  PubMed  Google Scholar 

  • Lamhonwah, A.M., Olpin, S.E., Pollitt, R.J., Vianey-Saban, C., Divry, P., Guffon, N., et al. (2002). Novel OCTN2 Mutations: No Genotype-Phenotype Correlations: Early Carnitine Therapy Prevents Cardiomyopathy. Am. J. Med. Genet., 111, 271–284.

    Article  PubMed  Google Scholar 

  • Lombard, K.A., Olson, A.L., Nelson, S.E., and Rebouche, C.J. (1989). Carnitine Status of Lacto-ovovegetarians and Strict Vegetarian Adults and Children. Am. J. Clin. Nutr., 50, 301–306.

    PubMed  CAS  Google Scholar 

  • Lu, K., Nishimori, H., Nakamura, Y., Shima, K., and Kuwajima, M. (1998). A Missense Mutation of Mouse OCTN2, a Sodium-Dependent Carnitine Cotransporter, in the Juvenile Visceral Steatosis Mouse. Biochem. Biophys. Res. Commun., 252, 590–594.

    Article  PubMed  CAS  Google Scholar 

  • Mayatepek, E., Nezu, I., Tarnai, I., Oku, A. Katsura, M., Shimane, M., et al. (2000). Two Novel Missense Mutations of the OCTN2 Gene (W283R and V446F) in a Patient with Primary Systemic Carnitine Deficiency. Hum. Mutat., 15, 118 (Online).

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, T., Hatanaka, T., Huang, W., Prasad, P.D., Leibach, E.H., Ganapathy, M.E., et al. (2001). Na+-and Cl-Coupled Active Transport of Carnitine by the Amino Acid Transporter ATB (0. +) from Mouse Colon Expressed in HRPE Cells and Xenopus Oocytes. J. Phvsiol., 532, 297–304.

    CAS  Google Scholar 

  • Nezu, J., Tarnai, I., Oku, A., Ohashi, R., Yabuuchi, H., Hashimoto, N., et al. (1999). Primary Systemic Carnitine Deficiency Is Caused by Mutations in a Gene Encoding Sodium Ion-Dependent Carnitine Transporter. Nat. Genet., 21, 91–94.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi, R., Tarnai, I., Yabuuchi, H., Nezu, J.I., Oku, A., Sai, Y., et al. (1999). Nat-Dependem Carnitine Transport by Organic Cation Transporter (OCTN2): Its Pharmacological and Toxicological Relevance. J. Pharmacol. Exp. Ther., 291, 778–784.

    PubMed  CAS  Google Scholar 

  • Ohashi, R., Tarnai, I., Nezu, J.I., Nikaido, H., Hashimoto, N., Oku, A., et al. (2001). Molecular and Physiological Evidence for Multifunctionality of Carnitine/Organic cation Transporter OCTN2. Mol. Pharmacol., 59, 358–366.

    PubMed  CAS  Google Scholar 

  • Ohashi, R., Tarnai, I., Inano, A., Katsura, M., Sai, Y., Nezu, J., et al. (2002). Studies on Functional Sites of Organic Cation/Carnitine Transporter OCTN2 (SLC22A5) Using a Ser467Cys Mutant Protein. J. Pharmacol. Exp. Ther., 302, 1286–1294.

    Article  PubMed  CAS  Google Scholar 

  • Palacin, M., Borsani, G., and Sebastio, G. (2001). The Molecular Bases of Cystinuria and Lysinuric Protein Intolerance. Curr. Opin. Genet. Dev., 11, 328–335.

    Article  PubMed  CAS  Google Scholar 

  • Rashed, M.S., Ozand, PT, Bennet, M.J., Barnard, J.J., Govindaraju, D.R., and Rinaldo, P. (1995). Diagnosis of Inborn Errors of Metabolism in Sudden Death Cases by Acylcarnitine Analysis of Postmortem Bile. Clin. Chem., 41, 1109–1114.

    PubMed  CAS  Google Scholar 

  • Rinaldo, P., Stanley, C.A., Hsu, B.Y.L., Sanchez, L.A., and Stern, H.J. (1997). Sudden Neonatal Death in Carnitine Transporter Deficiency. J. Pediatr., 131, 304–305.

    Article  PubMed  CAS  Google Scholar 

  • Roe, CR. and Ding, J. (2001). Mitochondrial Fatty acid Oxidation Disorders. In: C.R. Scriver, A.L. Beaudet, W.S. Sly, and D. Valle (eds), The Metabolic and Molecular Bases of Inherited Disorders (8th edn), New York: McGraw-Hill, pp. 2327–2356.

    Google Scholar 

  • Saheki, T., Li, M.X., and Kobayashi, K. (2000). Antagonizing Effect of AP-1 on Glucocorticoid Induction of Urea Cycle Enzymes: A Study of Hyperammonemia in Carnitine-Deficient, Juvenile Visceral Steatosis Mice. Mol. Genet. Metab., 71, 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Scaglia, E. and Longo, N. (1999). Primary and Secondary Alteration s of Neonatal Carnitine Metabolism. Semin. Perinatol., 23, 152–161.

    Article  PubMed  CAS  Google Scholar 

  • Scaglia, E., Wang, Y., Singh, R.H., Dembure, P.P., Pasquali, M., Fernhoff, P.M., et al. (1998). Defective Urinary Carnitine Transport in Heterozygotes for Primary Carnitine Deficiency. Genet. Med., 1, 34–39.

    Article  PubMed  CAS  Google Scholar 

  • Scaglia, E., Wang, Y., and Longo, N. (1999). Functional Characterization of the Carnitine Transporter Defective in Primary Carnitine Deficiency. Arch. Biochem. Biophys., 364, 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Seth, P., Wu, X., Huang, W., Leibach, E.H., and Ganapathy, V. (1999). Mutations in Novel Organic Cation Transporter (OCTN2), an Organic Cation/ Carnitine Transporter, with Differential Effects on the Organic Cation Transport Function and the Carnitine Transport Function. J. Biol. Chem., 274, 33388–33392.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Sommerfeld, E., Penn, D., Sodha, R.J., Progler, M., Novak, M., and Schneider, H. (1985). Transfer and Metabolism of Carnitine and Carnitine Esters in the In Vitro Perfused Human Placenta. Pediatr. Res., 19, 700–706.

    Article  PubMed  CAS  Google Scholar 

  • Shoji, Y., Koizumi, A., Kayo, T., Ohara, T., Takahashi, T.

    Google Scholar 

  • Harada, K., et al. (1998). Evidence for Linkage of Human Primary Carnitine Deficiency with D5S436: A Novel Gene Locus on Chromosome 5q. Am. J. Hum. Genet., 63, 101–108.

    Article  PubMed  Google Scholar 

  • Stanley, C.A., DeLeeuw, S., Coates, P.M., Vianey-Liaud, C., Divry, P., Bonnefont, J.P., et al. (1991). Chronic Cardiomyopathy and Weakness or Acute Coma in Children with a Defect in Carnitine Uptake. Ann. Neurol., 30, 709–716.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., et al. (1997). Cloning and Characterization of a Novel Human pH-Dependent Organic Cation Transporter, OCTN1. FEBS Lett., 419, 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H., Oku, A., Shimane, M., et al. (1998). Molecular and Functional Identification of Sodium Ion-Dependent, High Affinity Human Carnitine Transporter OCTN2. J. Biol. Chem., 273, 20378–20382.

    Article  PubMed  CAS  Google Scholar 

  • Tamai, I., China, K., Sai, Y., Kobayashi, D., Nezu, J., Kawahara, E., et al. (2001). Na+-Coupled Transport of L-Carnitine via High-Affinity Carnitine Transporter OCTN2 and its Subcellular Localization in Kidney. Biochim. Biophys. Acta, 1512, 273–284.

    Article  PubMed  CAS  Google Scholar 

  • Tang, N.L., Ganapathy, V., Wu, X., Hui, J., Seth, P., Yuen, P.M., et al. (1999). Mutations of OCTN2, an Organic Cation/Carnitine Transporter, Lead to Deficient Cellular Carnitine Uptake in Primary Carnitine Deficiency. Hum. Mol. Genet., 8, 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Tang, N.L., Hwu, W.L., Chan, R.T., Law, L.K., Fung, L.M., and Zhang, W.M. (2002). A founder mutation (R254X) of SLC22A5 (OCTN2) in Chinese primary carnitine deficiency patients. Hum. Mutat., 20, 232 (Online).

    Article  PubMed  Google Scholar 

  • Vaz, EM., Scholle, H.R., Ruiter, J., Hussaarts-Odijk, L.M., Pereira, R.R., Schweitzer, S., et al. (1999). Identification of Two Novel Mutations in OCTN2 of Three Patients with Systemic Carnitine Deficiency. Hum. Genet., 105, 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, C.A., Lukewille, U., Kaltenbach, S., Moschen, J., Broer, A., Risler, T. et al. (2000). Functional and Pharmacological Characterization of Human Na(+ )Carnitine Cotransporter hOCTN2. Am. J. Physiol. Renal. Physiol., 279, F584–F59I.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Ye, J., Ganapathy, V., and Longo, N. (1999). Mutations in the Organic Cation/Carnitine Transporter OCTN2 in Primary Carnitine Deficiency. Proc. Natl. Acad. Sci. USA, 96, 2356–2360.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Kelly, M.A., Cowan, T.M., and Longo, N. (2000a). A Missense Mutation in the OCTN2 Gene Associated with Residual Carnitine Transport Activity. Hum. Mutat., 15, 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Meadows, T.A., and Longo, N. (2000b). Abnormal Sodium Stimulation of Carnitine Transport in Primary Carnitine Deficiency. J. Biol. Chem. 275, 20782–20786.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Taroni, E, Garavaglia, B., and Longo, N. (2000c). Functional Analysis of Mutations in the OCTN2 Tran sporter Causing Primary Carnitine Deficiency: Lack of Genotype-Phenotype Correlation. Hum. Mutat., 16, 401–407.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Korman, S.H., Ye, J., Gargus, U., Gutman, A., Taroni, E. et al. (2001). Phenotype and Genotype Variation in Primary Carnitine Deficiency. Genet. Med., 3, 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Wilcken, B., Wiley, V., Sim, K.G., and Carpenter, K. (2001). Carnitine Transporter Defect Diagnosed by Newborn Screening with Electrospray Tandem Mass Spectrometry. J. Pediatr., 138, 581–584.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Prasad, P.D., Leibach, E.H., and Ganapathy, V. (1998). cDNA Sequence, Tran sport Function, and Genomic Organization of Hum an OCTN2, a New Member of the Organic Cat ion Transporter Family. Biochem. Biophys. Res. Commun., 246, 589–595.

    Article  PubMed  CAS  Google Scholar 

  • We, X., Huang, W., Prasad, P.D., Seth, P., Rajan, D.P., Leibach, E.H., et al. (1999). Functional Characteristics and Tissue Distribution Pattern of Organic Cation Transporter 2 (OCTN2), an Organic Cation/Carnitine Transporter. J. Pharma col. Exp. Ther., 290, 1482–1492.

    Google Scholar 

  • Wu, X., George, R.L., Huang, W., Wang, H., Conway, S.J., Leibach, E.H., et al. (2000). Structural and Functional Characteristics and Tissue Distribution Pattern of Rat OCTN1, an Organic Cation Transporter, Cloned from Placenta. Biochim. Biophys. Acta, 1466, 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Xiaofei, E., Wada, Y., Dakeishi, M., Hirasawa, E., Murata, K., Masuda, H., et al. (2002). Age-Associated Cardio-myopathy in Heterozygous Carrier Mice of a Pathological Mutation of Carnitine Transporter Gene, OCTN2. J. Gerontol. A Biol. Sci. Med. Sci., 57, 8270–8278.

    Article  Google Scholar 

  • Yokogawa, K., Higashi, Y., Tarnai, I., Nomura, M., Hashimoto, N., Nikaido, H., et al. (1999a). Decreased Tissue Distribution of L-Carnitine in Juvenile Visceral Steatosis Mice. J. Pharmacol. Exp. Ther., 289, 224–230.

    PubMed  CAS  Google Scholar 

  • Yokogawa, K., Miya, K., Tarnai, J., Higashi, Y., Nomura, M., Miyamoto, K., et al. (1999b). Characteristics of L-Carnitine Transport in Cultured Human Hepatoma HLF Cells. J. Pharm. Pharmacol., 51, 935–940.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Longo, N., Di San Filippo, C.A., Pasquali, M. (2003). The OCTN2 carnitine transporter and fatty acid oxidation. In: Bröer, S., Wagner, C.A. (eds) Membrane Transporter Diseases. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9023-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9023-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4761-3

  • Online ISBN: 978-1-4419-9023-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics