Skip to main content

Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging

  • Chapter
Acoustical Imaging

Abstract

Our Computerized Ultrasound Risk Evaluation (CURE) system has been developed to the engineering prototype stage and generated unique data sets of both transmission and reflection ultrasound (US). This paper will help define the clinical underpinnings of the developmental process and interpret the imaging results from a similar perspective. The CURE project was designed to incorporate numerous diagnostic parameters to improve upon two major areas of early breast cancer detection. CURE may provide improved tissue characterization of breast masses and reliable detection of abnormal microcalcifications found in some breast cancers and ductal carcinoma in situ (DCIS). Current breast US is limited to mass evaluation, whereas mammography also detects and guides biopsy of malignant calcifications. Screening with CURE remains a distant goal, but improved follow-up of mammographic abnormalities may represent a feasible breakthrough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Liberman L. Clinical management issues in percutaneous core breast biopsy. Radiol Clin North Am. 2000; 38:791–807.

    Article  PubMed  CAS  Google Scholar 

  2. Secker-Walker RH, Vacek PM, Hooper GJ, Plante DA, Detsky AS. Screening for breast cancer: time, travel, and out-of-pocket expenses. J Natl Cancer Inst199991:702–8.

    Article  PubMed  CAS  Google Scholar 

  3. Makoske T, Preletz R, Riley L, Fogarty K, Swank M, Cochrane P, Blisard D. Long-term outcomes of stereotactic breast biopsies. Am Surg. 200066:1104–8.

    PubMed  CAS  Google Scholar 

  4. Cleverley JR, Jackson AR Bateman AC. Pre-operative localization of breast microcalcification using high-frequency ultrasound. Clin Radiol. 1997; 52:924–6.

    Article  PubMed  CAS  Google Scholar 

  5. Skaane P. Ultrasonography as adjunct to mammography in the evaluation of breast tumors. Acta Radiol Suppl. 1999;420:1–47.

    PubMed  CAS  Google Scholar 

  6. Teh WL, Wilson AR, Evans AJ, Burrell H, Pinder SE, Ellis IO. Ultrasound guided core biopsy of suspicious mammographic calcifications using high frequency and power Doppler ultrasound. Clin Radiol. 2000; 55:390–4.

    Article  PubMed  CAS  Google Scholar 

  7. Visible Human Project, National Library of Medicine, Bethesda, Maryland, http://www.rita.nih.gov/research/visible/visible human.html.

    Google Scholar 

  8. Goss, S.A., Johnston, R.L. and Dunn, F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc AM1978; 64:423–457

    Article  PubMed  CAS  Google Scholar 

  9. Edmonds, P.D., Mortensen, C.L., Hill, J.R., Holland, S.K., Jensen, J.F., Schattner, P. and Valdes, A.D. Ultrasound tissue characterization of breast biopsy specimens. Ultrasound Imaging1991; 13:162–185.

    Article  CAS  Google Scholar 

  10. Fitch, J.P., Synthetic Aperture RadarSpringer-Verlag1988.

    Google Scholar 

  11. A. J. Devaney. A filtered backpropagation algorithm for diffraction tomography. Ultrasonic Imaging4(4):336–350, October 1982.

    Article  PubMed  CAS  Google Scholar 

  12. André MP, Janee HS, Martin PJ, Otto GP, Spivey BA, Palmer DA. High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays. International Journal of Imaging Systems and Technology1997; 8:137–147.

    Article  Google Scholar 

  13. S. A. Johnson and M. L. Tracy. Inverse scattering solutions by a sine basis, multiple source, moment method. Part I: Theory, Ultrasonic Imaging5:361–3751983.

    CAS  Google Scholar 

  14. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker SH, Sisney GA. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology. 1995;196:123–34.

    PubMed  CAS  Google Scholar 

  15. 61 Federal Register 60712-60713 (1996). (http://www.rsna. org/REG/research/regulatory/wfprfcexamples.html)

    Google Scholar 

  16. Schreiman JS, Gisvold JJ, Greenleaf JF, Bahn RC. Ultrasound transmission computed tomography of the breast. Radiology1984; 150:523–30.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Littrup, P.J. et al. (2002). Computerized Ultrasound Risk Evaluation (CURE) System: Development of Combined Transmission and Reflection Ultrasound with New Reconstruction Algorithms for Breast Imaging. In: Maev, R.G. (eds) Acoustical Imaging. Acoustical Imaging, vol 26. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8606-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8606-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4644-9

  • Online ISBN: 978-1-4419-8606-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics