Skip to main content

Cartilage Segmentation

  • Chapter
  • First Online:
Cartilage Imaging

Abstract

Magnetic Resonance Imaging (MRI) offers unique opportunities for direct visualization and quantification of cartilage morphology. MRI enables three-dimensional (3D) acquisitions with contiguous slices, an essential feature for 3D quantification, resulting in improved accuracy and precision of morphological metrics. MRI has unique tomographic capabilities, excellent soft tissue contrast, high signal to noise ratio (SNR), and high-spatial resolution making it the imaging modality of choice to quantify cartilage morphology in vivo. However, the anatomic location of articular cartilage, small size, special geometry, and short transverse relaxation time (T 2) represent also a challenge for MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carballido-Gamio J, Link TM, Li X, Han ET, Krug R, Ries MD, et al. Feasibility and reproducibility of relaxometry, morphometric, and geometrical measurements of the hip joint with magnetic resonance imaging at 3T. J Magn Reson Imaging. 2008;28(1):227–35.

    Article  PubMed  Google Scholar 

  2. Link TM, Majumdar S, Daldrup HE, Peterfy C, Uffmann M, Dowling C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging. 1998;16(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  3. Hardya PA, Newmark R, Liu YM, Meier D, Norris S, Piraino DW, et al. The influence of the resolution and contrast on measuring the articular cartilage volume in magnetic resonance images. Magn Reson Imaging. 2000;18(8):965–72.

    Article  PubMed  CAS  Google Scholar 

  4. Zuo J, Li X, Banerjee S, Han E, Majumdar S. Parallel imaging of knee cartilage at 3 Tesla. J Magn Reson Imaging. 2007;26(4):1001–9.

    Article  PubMed  Google Scholar 

  5. Gold GE, Hargreaves BA, Reeder SB, Vasanawala SS, Beaulieu CF. Controversies in protocol selection in the imaging of articular cartilage. Semin Musculoskelet Radiol. 2005;9(2):161–72.

    Article  PubMed  Google Scholar 

  6. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell. 1990;12(17):629–39.

    Article  Google Scholar 

  7. Stammberger T, Eckstein F, Michaelis M, Englmeier KH, Reiser M. Interobserver reproducibility of quantitative cartilage measurements: comparison of B-spline snakes and manual segmentation. Magn Reson Imaging. 1999;17(7):1033–42.

    Article  PubMed  CAS  Google Scholar 

  8. Lynch JA, Zaim S, Zhao J, Stork A, Peterfy CG, Genant HK. Cartilage segmentation of 3D MRI scans of the osteoarthritic knee combining user knowledge and active contours. Paper presented at: SPIE, Medical Imaging2000; San Diego.

    Google Scholar 

  9. Grau V, Mewes AU, Alcaniz M, Kikinis R, Warfield SK. Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging. 2004;23(4):447–58.

    Article  PubMed  CAS  Google Scholar 

  10. Pakin SK, Tamez-Pena JG, Totterman S, Parker KJ. Segmentation, surface extraction, and thickness computation of articular cartilage. Paper presented at: SPIE, Medical Imaging2002; San Diego.

    Google Scholar 

  11. Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal. 2000;4(1):43–55.

    Article  PubMed  CAS  Google Scholar 

  12. Eckstein F, Burstein D, Link TM. Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed. 2006;19(7):822–54.

    Article  PubMed  Google Scholar 

  13. Naish JH, Xanthopoulos E, Hutchinson CE, Waterton JC, Taylor CJ. MR measurement of articular cartilage thickness distribution in the hip. Osteoarthritis Cartilage. 2006;14(10):967–73.

    Article  PubMed  CAS  Google Scholar 

  14. Nishii T, Nakanishi K, Sugano N, Masuhara K, Ohzono K, Ochi T. Articular cartilage evaluation in osteoarthritis of the hip with MR imaging under continuous leg traction. Magn Reson Imaging. 1998;16(8):871–5.

    Article  PubMed  CAS  Google Scholar 

  15. Nakanishi K, Tanaka H, Nishii T, Masuhara K, Narumi Y, Nakamura H. MR evaluation of the articular cartilage of the femoral head during traction. Correlation with resected femoral head. Acta Radiol. 1999;40(1):60–3.

    PubMed  CAS  Google Scholar 

  16. Nishii T, Sugano N, Tanaka H, Nakanishi K, Ohzono K, Yoshikawa H. Articular cartilage abnormalities in dysplastic hips without joint space narrowing. Clin Orthop Relat Res Feb. 2001;383:183–90.

    Article  Google Scholar 

  17. Wirth W, Eckstein F. A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans Med Imaging. 2008;27(6):737–44.

    Article  PubMed  Google Scholar 

  18. Kauffmann C, Gravel P, Godbout B, Gravel A, Beaudoin G, Raynauld J-P, et al. Computer-aided method for quantification of cartilage thickness and volume changes using MRI: validation study using a synthetic model. IEEE Trans Biomed Eng. 2003;50(8):978–88.

    Article  PubMed  Google Scholar 

  19. Stahl R, Blumenkrantz G, Carballido-Gamio J, Zhao S, Munoz T, Hellio Le Graverand-Gastineau MP, et al. MRI-derived T2 relaxation times and cartilage morphometry of the tibio-femoral joint in subjects with and without osteoarthritis during a 1-year follow-up. Osteoarthritis Cartilage. 2007;15(11):1225–34.

    Article  PubMed  CAS  Google Scholar 

  20. Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, et al. Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal. 2008;12(2):120–35.

    Article  PubMed  Google Scholar 

  21. Carballido-Gamio J, Link TM, Majumdar S. New techniques for cartilage magnetic resonance imaging relaxation time analysis: texture analysis of flattened cartilage and localized intra- and inter-subject comparisons. Magn Reson Med. 2008;59(6):1472–7.

    Article  PubMed  Google Scholar 

  22. Burgkart R, Glaser C, Hinterwimmer S, Hudelmaier M, Englmeier KH, Reiser M, et al. Feasibility of T and Z scores from magnetic resonance imaging data for quantification of cartilage loss in osteoarthritis. Arthritis Rheum. 2003;48(10):2829–35.

    Article  PubMed  CAS  Google Scholar 

  23. Hunter DJ, Niu J, Zhang YQ, McLennan C, LaValley M, Tu X, et al. Cartilage volume must be normalized to bone surface area in order to provide satisfactory construct validity: The Framingham Study. Osteoarthritis Cartilage. 2004;12(Suppl B):S2.

    Google Scholar 

  24. Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16(10):1150–9.

    Article  PubMed  CAS  Google Scholar 

  25. Stammberger T, Eckstein F, Englmeier KH, Reiser M. Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magn Reson Med. 1999;41(3):529–36.

    Article  PubMed  CAS  Google Scholar 

  26. Glüer CC, Blake G, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995;5:262–70.

    Article  PubMed  Google Scholar 

  27. Teichtahl AJ, Wluka AE, Davies-Tuck ML, Cicuttini FM. Imaging of knee osteoarthritis. Best Pract Res Clin Rheumatol. 2008;22(6):1061–74.

    Article  PubMed  CAS  Google Scholar 

  28. Cicuttini F, Forbes A, Morris K, Darling S, Bailey M, Stuckey S. Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthritis Cartilage. 1999;7(3):265–71.

    Article  PubMed  CAS  Google Scholar 

  29. Peterfy CG, van Dijke CF, Janzen DL, Glüer CC, Namba R, Majumdar S, et al. Quantification of articular cartilage in the knee with pulsed saturation transfer subtraction and fat-suppressed MR imaging: optimization and validation. Radiology. 1994;192(2):485–91.

    PubMed  CAS  Google Scholar 

  30. Burgkart R, Glaser C, Hyhlik-Durr A, Englmeier KH, Reiser M, Eckstein F. Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum. 2001;44(9):2072–7.

    Article  PubMed  CAS  Google Scholar 

  31. Graichen H, von Eisenhart-Rothe R, Vogl T, Englmeier KH, Eckstein F. Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthritis Rheum. 2004;50(3):811–6.

    Article  PubMed  Google Scholar 

  32. Eckstein F, Buck RJ, Burstein D, Charles HC, Crim J, Hudelmaier M, et al. Precision of 3.0 Tesla quantitative magnetic resonance imaging of cartilage morphology in a multicentre clinical trial. Ann Rheum Dis. 2008;67(12):1683–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cicuttini FM, Wluka AE, Forbes A, Wolfe R. Comparison of tibial cartilage volume and radiologic grade of the tibiofemoral joint. Arthritis Rheum. 2003;48(3):682–8.

    Article  PubMed  CAS  Google Scholar 

  34. Jones G, Ding C, Scott F, Glisson M, Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage. 2004;12(2):169–74.

    Article  PubMed  CAS  Google Scholar 

  35. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, V F, Beaudoin G, de Guise JA, et al. Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum. 2004;50(2):476–87.

    Article  PubMed  Google Scholar 

  36. Wluka AE, Wolfe R, Davis SR, Stuckey S, Cicuttini FM. Tibial cartilage volume change in healthy postmenopausal women: a longitudinal study. Ann Rheum Dis. 2004;63(4):444–9.

    Article  PubMed  CAS  Google Scholar 

  37. Cicuttini FM, Wluka A, Bailey M, O’Sullivan R, Poon C, Yeung S, et al. Factors affecting knee cartilage volume in healthy men. Rheumatology (Oxford). 2003;42(2):258–62.

    Article  CAS  Google Scholar 

  38. Hanna F, Ebeling PR, Wang Y, O’Sullivan R, Davis S, Wluka AE, et al. Factors influencing longitudinal change in knee cartilage volume measured from magnetic resonance imaging in healthy men. Ann Rheum Dis. 2005;64(7):1038–42.

    Article  PubMed  CAS  Google Scholar 

  39. Ding C, Cicuttini F, Blizzard L, Scott F, Jones G. A longitudinal study of the effect of sex and age on rate of change in knee cartilage volume in adults. Rheumatology (Oxford). 2007;46(2):273–9.

    Article  Google Scholar 

  40. Beattie KA, Duryea J, O’Neill J, Pui M, Boulos P, Webber CE, et al. Minimum joint space width and tibial cartilage morphology in the knees of healthy individuals: a cross-sectional study. BMC Musculoskelet Disord. 2008;9:119.

    Article  PubMed  Google Scholar 

  41. Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C. Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage. 2006;14(Suppl A):A46–75.

    Article  PubMed  Google Scholar 

  42. Cicuttini FM, Forbes A, Yuanyuan W, Rush G, Stuckey SL. Rate of knee cartilage loss after partial meniscectomy. J Rheumatol. 2002;29(9):1954–6.

    PubMed  Google Scholar 

  43. Gandy SJ, Dieppe PA, Keen MC, Maciewicz RA, Watt I, Waterton JC. No loss of cartilage volume over three years in patients with knee osteoarthritis as assessed by magnetic resonance imaging. Osteoarthritis Cartilage. 2002;10(12):929–37.

    Article  PubMed  CAS  Google Scholar 

  44. Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C, et al. Change in cartilage morphometry: a sample of the progression cohort of the Osteoarthritis Initiative. Ann Rheum Dis. 2009;68(3):349–56.

    Article  PubMed  CAS  Google Scholar 

  45. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G. Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum. 2005;52(7):2033–9.

    Article  PubMed  Google Scholar 

  46. Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthritis Cartilage. 2003;11(10):725–9.

    Article  PubMed  CAS  Google Scholar 

  47. Phan CM, Link TM, Blumenkrantz G, Dunn TC, Ries MD, Steinbach LS, et al. MR imaging findings in the follow-up of patients with different stages of knee osteoarthritis and the correlation with clinical symptoms. Eur Radiol. 2006;16(3):608–18.

    Article  PubMed  Google Scholar 

  48. Wluka AE, Wolfe R, Stuckey S, Cicuttini FM. How does tibial cartilage volume relate to symptoms in subjects with knee osteoarthritis? Ann Rheum Dis. 2004;63(3):264–8.

    Article  PubMed  CAS  Google Scholar 

  49. Cicuttini F, Wluka A, Wang Y, Stuckey S. The determinants of change in patella cartilage volume in osteoarthritic knees. J Rheumatol. 2002;29(12):2615–9.

    PubMed  Google Scholar 

  50. Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63(9):1124–7.

    Article  PubMed  CAS  Google Scholar 

  51. Ding C, Garnero P, Cicuttini F, Scott F, Cooley H, Jones G. Knee cartilage defects: association with early radiographic osteoarthritis, decreased cartilage volume, increased joint surface area and­ type II collagen breakdown. Osteoarthritis Cartilage. 2005;13(3):198–205.

    Article  PubMed  Google Scholar 

  52. Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee(1). Osteoarthritis Cartilage. 2004;12(2):86–96.

    Article  PubMed  CAS  Google Scholar 

  53. Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12(12):997–1005.

    Article  PubMed  Google Scholar 

  54. Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32(3):284–90.

    Article  PubMed  Google Scholar 

  55. Wluka AE, Wang Y, Davies-Tuck M, English DR, Giles GG, Cicuttini FM. Bone marrow lesions predict progression of cartilage defects and loss of cartilage volume in healthy middle-aged adults without knee pain over 2 yrs. Rheumatology (Oxford). 2008;47(9):1392–6.

    Article  CAS  Google Scholar 

  56. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP, et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54(5):1529–35.

    Article  PubMed  Google Scholar 

  57. Raynauld JP, Martel-Pelletier J, Berthiaume MJ, Abram F, Choquette D, Haraoui B, et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann Rheum Dis. 2008;67(5):683–8.

    Article  PubMed  Google Scholar 

  58. Teichtahl AJ, Davies-Tuck ML, Wluka AE, Jones G, Cicuttini FM. Change in knee angle influences the rate of medial tibial cartilage volume loss in knee osteoarthritis. Osteoarthritis Cartilage. 2009;17(1):8–11.

    Article  PubMed  CAS  Google Scholar 

  59. Sharma L, Eckstein F, Song J, Guermazi A, Prasad P, Kapoor D, et al. Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum. 2008;58(6):1716–26.

    Article  PubMed  Google Scholar 

  60. Ding C, Martel-Pelletier J, Pelletier JP, Abram F, Raynauld JP, Cicuttini F, et al. Knee meniscal extrusion in a largely non-­osteoarthritic cohort: association with greater loss of cartilage volume. Arthritis Res Ther. 2007;9(2):R21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Carballido-Gamio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carballido-Gamio, J., Link, T.M. (2011). Cartilage Segmentation. In: Link, T. (eds) Cartilage Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8438-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8438-8_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8437-1

  • Online ISBN: 978-1-4419-8438-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics