Skip to main content

Looking Beyond HEA: Matching SCD Patients for RH Variants

  • Conference paper
  • First Online:
BeadChip Molecular Immunohematology

Abstract

Red blood cell (RBC) blood group alloimmunization remains a major problem in transfusion medicine. This is particularly true for chronically transfused patients. Patients with sickle cell disease (SCD) notoriously make more alloantibodies to RBC antigens than any other patient population, especially alloantibodies to Rh antigens. The classical method of testing for blood group antigens and antibodies is hemagglutination. However, this method has certain limitations, some of which can be overcome by testing DNA to predict a blood type. DNA testing allows conservation of antibodies for confirmation by hemagglutination of predicted antigen negativity. High-throughput DNA array platforms allow for the testing of a relatively large number of donors, thereby providing antigen-negative blood to patients in a novel way and possibly preventing immunization. We performed a study to compare the results obtained by using RH BeadChips™ to laboratory-developed tests and to hemagglutination. Two sets of samples were tested: one set chosen had variant Rh types to challenge the BeadChip™ technology. The other set consisted of random samples from African-American donors and SCD patients to estimate the prevalence of RH alleles. The purpose of this testing was to assess the accuracy and efficiency of the BioArray Solutions prototype BeadChip™ system for RH allele determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aygun B, Padmanabhan S, Paley C et al. (2002) Clinical significance of RBC alloantibodies and autoantibodies in sickle cell patients who received transfusions. Transfusion 42:37–43

    Article  CAS  PubMed  Google Scholar 

  2. Garratty G (1997) Severe reactions associated with transfusion of patients with sickle cell disease. Transfusion 37:357–361

    Article  CAS  PubMed  Google Scholar 

  3. Giblett ER (1977) Blood group alloantibodies: an assessment of some laboratory practices. Transfusion 4:299–308

    Article  Google Scholar 

  4. Heddle NM, Soutar RL, O’Hoski PL et al. (1995) A prospective study to determine the frequency and clinical significance of alloimmunization post-transfusion. Br J Haematol 91:1000–1005

    Article  CAS  PubMed  Google Scholar 

  5. Hoeltge GA, Domen RE, Rybicki LA et al. (1995) Multiple red cell transfusions and alloimmunization: experience with 6996 antibodies detected in a total of 159,262 patients from 1985 to 1993. Arch Pathol Lab Med 119:42–45

    CAS  PubMed  Google Scholar 

  6. Redman M, Regan F, Contreras M (1996) A prospective study of the incidence of red cell allo-immunisation following transfusion. Vox Sang 71:216–220

    Article  CAS  PubMed  Google Scholar 

  7. Rosse WF, Gallagher D, Kinney TR et al. (1990) Transfusion and alloimmunization in sickle cell disease. Blood 76:1431–1437

    CAS  PubMed  Google Scholar 

  8. Hillyer CD, Shaz BH, Winkler AM et al. (2008) Integrating molecular technologies for red blood cell typing and compatibility testing into blood centers and transfusion services. Transfus Med Rev 22:117–132

    Article  PubMed  Google Scholar 

  9. Adams RJ, McKie VC, Brambilla D et al. (1998) Stroke prevention trial in sickle cell anemia. Control Clin Trials 19:110–129

    Article  CAS  PubMed  Google Scholar 

  10. Pegelow CH, Adams RJ, McKie V et al. (1995) Risk of recurrent stroke in patients with sickle cell disease treated with erythrocyte transfusions. J Pediatr 126:896–899

    Article  CAS  PubMed  Google Scholar 

  11. Vichinsky EP, Luban NL, Wright E et al. (2001) Prospective RBC phenotype matching in a stroke-prevention trial in sickle cell anemia: a multicenter transfusion trial. Transfusion 41:1086–1092

    Article  CAS  PubMed  Google Scholar 

  12. National Heart, Lung, and Blood Institute (2002) The management of sickle cell disease, NIH Publication # 02-2117 National Institutes of Health, Bethesda, MD http://www.nhlbi.nih.gov/health/prof/blood/sickle/sc_mngt.pdf

  13. Giblett ER (1961) A critique of the theoretical hazard of inter vs. intra-racial transfusion. Transfusion 1:233–238

    Article  CAS  PubMed  Google Scholar 

  14. Ness PM (1994) To match or not to match: the question for chronically transfused patients with sickle cell anemia. Transfusion 34:558–560

    Article  CAS  PubMed  Google Scholar 

  15. Sosler SD, Jilly BJ, Saporito C et al. (1993) A simple, practical model for reducing alloimmunization in patients with sickle cell disease. Am J Hematol 43:103–106

    Article  CAS  PubMed  Google Scholar 

  16. Wayne AS, Kevy SV, Nathan DG (1993) Transfusion management of sickle cell disease. Blood 81:1109–1123

    CAS  PubMed  Google Scholar 

  17. Tahhan HR, Holbrook CT, Braddy LR et al. (1994) Antigen-matched donor blood in the transfusion management of patients with sickle cell disease. Transfusion 34:562–569

    Article  CAS  PubMed  Google Scholar 

  18. Natukunda B, Schonewille H, Ndugwa C et al. (2010) Red blood cell alloimmunization in sickle cell disease patients in Uganda. Transfusion 50:20–25

    Article  PubMed  Google Scholar 

  19. King KE, Shirey RS (2009) Transfusion management of patients with sickle cell disease: the continuing dilemma. Transfusion 50:2–4

    PubMed  Google Scholar 

  20. Olujohungbe A, Hambleton I, Stephens L et al. (2001) Red cell antibodies in patients with homozygous sickle cell disease: a comparison of patients in Jamaica and the United Kingdom. Br J Haematol 113:661–665

    Article  CAS  PubMed  Google Scholar 

  21. Reid ME, Lomas-Francis C (2004) Blood group antigen factsbook, 2nd edn. Academic Press, San Diego

    Google Scholar 

  22. Roback JD, Combs MR, Grossman BJ et al. (2008) Technical manual, 16th edn. AABB, Bethesda

    Google Scholar 

  23. Human Genome Variation Society (2006) Blood group antigen gene mutation database. http://www.ncbi.nlm.nih.gov/gv/mhc/xslcgi.cgi?cmd=bgmut/home. Accessed 30 June 2010

  24. Lögdberg L, Reid ME, Lamont RE et al. (2005) Human blood group genes 2004: chromosomal locations and cloning strategies. Transfus Med Rev 19:45–57

    Article  PubMed  Google Scholar 

  25. Lögdberg L, Reid ME, Zelinski T (2010) Human blood group genes 2010: chromosomal locations and cloning strategies revisited. Transfus Med Rev (in press)

    Google Scholar 

  26. Daniels GL, Fletcher A, Garratty G et al. (2004) Blood group terminology 2004. Vox Sang 87:316

    Google Scholar 

  27. Baleotti W, Reid ME, Rios M et al (2006) Dombrock gene analysis in Brazilians reveals novel alleles. Vox Sang 91:81–87

    Article  CAS  PubMed  Google Scholar 

  28. Banks J, Poole J, Ahrens N et al. (2004) SERF: a new antigen in the Cromer blood group system. Transfus Med 14:313–318

    Article  CAS  PubMed  Google Scholar 

  29. Castilho L, Baleotti W Jr, Reid ME et al. (2006) A novel DO allele combination namely DOB-WL. Vox Sang 91(Suppl 3):106

    Google Scholar 

  30. Hue-Roye K, Chaudhuri A, Velliquette RW et al. (2005) STAR: a novel high prevalence antigen in the Scianna blood group system. Transfusion 45:245–247

    Article  CAS  PubMed  Google Scholar 

  31. Hue-Roye K, Lomas-Francis C, Belaygorod L et al. (2007) Three new high prevalence antigens in the Cromer blood group system. Transfusion 47:1621–1629

    Article  CAS  PubMed  Google Scholar 

  32. Ratliff J, Veneman S, Ward J et al. (2007) An alloantibody to a high prevalence MNS antigen in a person with a GP.JL/Mk phenotype. Immunohematology 23:146–149

    CAS  PubMed  Google Scholar 

  33. Rios M, Chaudhuri A, Mallinson G et al. (2000) New genotypes in Fy(a-b-) individuals: nonsense mutations (Trp to stop) in the coding sequence of either FY A or FY B. Br J Haematol 108:448–454

    Article  CAS  PubMed  Google Scholar 

  34. Storry JR, Hue-Roye K, Reid ME (2003) A novel PCR assay for the detection of silenced GYPB*S alleles. Transfusion 43(Suppl):1A

    Google Scholar 

  35. Storry JR, Reid ME, Fetics S et al. (2003) Mutations in GYPB exon 5 drive the S-s-U+var phenotype in persons of African descent: implications for transfusion. Transfusion 43:1738–1747

    Article  CAS  PubMed  Google Scholar 

  36. Velliquette R, Palacajornsuk P, Hue-Roye K et al. (2008) Novel GYP(A-B-A) hybrid gene in a DANE+ person who made an antibody to a high prevalence MNS antigen. Transfusion 48:2618–2623

    Article  CAS  PubMed  Google Scholar 

  37. Singleton BK, Green CA, Avent ND et al. (2000) The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood 95:12–18

    CAS  PubMed  Google Scholar 

  38. Tournamille C, Colin Y, Cartron JP et al. (1995) Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 10:224–228

    Article  CAS  PubMed  Google Scholar 

  39. Castilho L et al (1998) Duffy genotyping in Fy(b) Brazilians and the prevalence of the GATA box mutation. Transfusion 38(Suppl):38S

    Google Scholar 

  40. Pellegrino JJ et al. (1999) Genotyping of K1/K2, Jka/Jkb, Fya/Fyb-GATA and RHD in a population of highly diverse ancestry [Abstract]. Transfusion 39(Suppl 1):104s

    Google Scholar 

  41. Rios M, Reid ME, Naime D et al. (1997) Importance of GATA box analysis in genotyping for the Duffy blood group system [Abstract]. Transfusion 37(Suppl):101S

    Google Scholar 

  42. Storry JR, Sausais L, Roye-Hue K et al. (2003) GUTI: a new antigen in the Cromer blood group system. Transfusion 43:340–344

    Article  CAS  PubMed  Google Scholar 

  43. Avent ND, Martinez A, Flegel WA et al. (2007) The BloodGen project: toward mass-scale comprehensive genotyping of blood donors in the European Union and beyond. Transfusion 47:40S–46S

    Article  CAS  PubMed  Google Scholar 

  44. Beiboer SH, Wieringa-Jelsma T, Maaskant-Van Wijk PA et al. (2005) Rapid genotyping of blood group antigens by multiplex polymerase chain reaction and DNA microarray hybridization. Transfusion 45:667–679

    Article  CAS  PubMed  Google Scholar 

  45. Bugert P, McBride S, Smith G et al. (2005) Microarray-based genotyping for blood groups: comparison of gene array and 5′-nuclease assay techniques with human platelet antigen as a model. Transfusion 45:654–659

    Article  CAS  PubMed  Google Scholar 

  46. Denomme GA, Van Oene M (2005) High-throughput multiplex single-nucleotide polymorphism analysis for red cell and platelet antigen genotypes. Transfusion 45:660–666

    Article  CAS  PubMed  Google Scholar 

  47. Westhoff CM (2006) Molecular testing for transfusion medicine. Curr Opin Hematol 13:471–475

    Article  PubMed  Google Scholar 

  48. Hashmi G, Shariff T, Seul M et al. (2005) A flexible array format for large-scale, rapid blood group DNA typing. Transfusion 45:680–688

    Article  CAS  PubMed  Google Scholar 

  49. Hashmi G, Shariff T, Zhang Y et al. (2007) Determination of 24 minor red blood cell antigens for more than 2000 blood donors by high-throughput DNA analysis. Transfusion 47:736–747

    Article  CAS  PubMed  Google Scholar 

  50. Klapper E, Zhang Y, Figueroa P et al. (2010) Toward extended phenotype matching: a new operational paradigm for the transfusion service. Transfusion 50:536–546

    Article  PubMed  Google Scholar 

  51. Shaz BH, Zimring JC, Demmons DG et al. (2008) Blood donation and blood transfusion: special considerations for African Americans. Transfus Med Rev 22:202–214

    Article  PubMed  Google Scholar 

  52. Ribeiro KR, Guarnieri MH, da Costa DC et al. (2009) DNA array analysis for red blood cell antigens facilitates the transfusion support with antigen-matched blood in patients with sickle cell disease. Vox Sang 97:147–152

    Article  CAS  PubMed  Google Scholar 

  53. Wagner FF, Frohmajer A, Flegel WA (2001) RHD positive haplotypes in D negative Europeans. BMC 2:10

    CAS  Google Scholar 

  54. Avent ND, Reid ME (2000) The Rh blood group system: a review. Blood 95:375–387

    CAS  PubMed  Google Scholar 

  55. Wagner FF, Flegel WA (2000) RHD gene deletion occurred in the Rhesus box. Blood 95:3662–3668

    CAS  PubMed  Google Scholar 

  56. Westhoff CM (2007) The structure and function of the Rh antigen complex. Semin Hematol 44:42–50

    Article  CAS  PubMed  Google Scholar 

  57. Huang C-H, Liu PZ, Cheng JG (2000) Molecular biology and genetics of the Rh blood group system. Semin Hematol 37:150–165

    Article  CAS  PubMed  Google Scholar 

  58. Noizat-Pirenne F, Lee K, Le Pennec P-Y et al. (2002) Rare RHCE phenotypes in black individuals of Afro-Caribbean origin: identification and transfusion safety. Blood 100:4223–4231

    Article  CAS  PubMed  Google Scholar 

  59. Vege S, Meyer W, Copeland T et al. (2007) A new RHce allele, RHCE*ceTI, is associated with C typing discrepancies and is linked to RHD*DIVa. Transfusion 47(Suppl):156A–157A

    Google Scholar 

  60. Hemker MB, Ligthart PC, Berger L et al. (1999) DAR, a new RhD variant involving exons 4, 5, and 7, often in linkage with ceAR, a new Rhce variant frequently found in African blacks. Blood 94:4337–4342

    CAS  PubMed  Google Scholar 

  61. Westhoff CM et al. (2007) The RHCE*ceMO allele is linked to RHD*DAU0 and encodes an hrS– and hrB– red cell phenotype [Abstract]. Transfusion 47(Suppl):155A–156A

    Google Scholar 

  62. Westhoff CM, Vege S, Halter-Hipsky C et al. (2010) DIIIa and DIII type 5 are encoded by the same allele and are associated with altered RHCE*ce alleles: clinical implications. Transfusion 50:1303–1311

    Article  CAS  PubMed  Google Scholar 

  63. Lomas-Francis C, Reid ME, Westhoff C et al. (2009) JAL (RH48) blood group antigen: serological observations. Transfusion 49:719–724

    Article  CAS  PubMed  Google Scholar 

  64. Halter Hipsky C, Lomas-Francis C, Fuchisawa A, et al. (2010) RHCE*ceCF encodes partial c and partial e but not CELO an antigen antithetical to Crawford. Transfusion (in press)

    Google Scholar 

  65. Westhoff CM, Anstee DJ (2010) A new paradigm for pretransfusion testing with the same perennial limitations. Transfusion 50:520–521

    Article  PubMed  Google Scholar 

  66. Halter-Hipsky C, Hue-Roye K, Coghlan G et al. (2009) Two alleles with RHCE*nt818C>T change encode the low prevalence Rh antigen STEM. Blood 114(Suppl):1226–1227

    Google Scholar 

  67. Reid ME (2009) Applications and experience with PCR-based assays to predict blood group antigens. Transfus Med Hemother 36:168–178

    Article  PubMed  Google Scholar 

  68. Strauss D, Reid ME (2008) Value of DNA-based assays for donor screening and regulatory issues. Immunohematology 24:175–179

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion E. Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this paper

Cite this paper

Reid, M.E., Hipsky, C.H. (2011). Looking Beyond HEA: Matching SCD Patients for RH Variants. In: Ness, P., Sloan, S., Moulds, J. (eds) BeadChip Molecular Immunohematology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7512-6_10

Download citation

Publish with us

Policies and ethics