Skip to main content

Functions of Myosin Motor Proteins in the Nervous System

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 5))

Abstract

The myosin superfamily consists of 24 classes of actin-based molecular motors that carry out a diverse array of cellular functions ranging from cell motility and morphology to cytokinesis, signal transduction, membrane trafficking, RNA and protein localization. The development and functioning of the nervous system strongly depends on the proper establishment of complex networks of neurons with highly specialized morphologies and molecular composition. Thus, it is not at all surprising that multiple classes of myosin motors are expressed in the nervous system, including classes I, II, III, V, VI, VII, IX, X, XV, and XVI. This review discusses the current knowledge on myosin functions in both neurons and specific sensory neurons, the hair cells of the inner ear, and the photoreceptors in the eye. The role of myosin II in growth cone motility and neurite outgrowth is the best characterized myosin function in neurons. However, there is increasing evidence that different myosin motors are also involved in protein and organelle trafficking underlying synaptic function. Multiple myosin motors have been localized to hair cells and photoreceptors and associated with genetic diseases; however, a future challenge will be a better characterization of the cellular functions of these various motor proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, Mohiddin SA, Fananapazir L, Caruso RC, Husnain T, Khan SN, Riazuddin S, Griffith AJ, Friedman TB, Wilcox ER (2003) Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  • Alami NH, Jung P, Brown A (2009) Myosin Va increases the efficiency of neurofilament transport by decreasing the duration of long-term pauses. J Neurosci 29(20):6625–6634.

    Article  PubMed  CAS  Google Scholar 

  • Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K (1998) Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells 3:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Bahler M, Kroschewski R, Stoffler HE, Behrmann T (1994) Rat myr 4 defines a novel subclass of myosin I, identification, distribution, localization, and mapping of calmodulin-binding sites with differential calcium sensitivity. J Cell Biol 126:375–389.

    Article  PubMed  CAS  Google Scholar 

  • Bahloul A, Chevreux G, Wells AL, Martin D, Nolt J, Yang Z, Chen LQ, Potier N, Van Dorsselaer A, Rosenfeld S, Houdusse A, Sweeney HL (2004) The unique insert in myosin VI is a structural calcium–calmodulin binding site. Proc Natl Acad Sci USA 101:4787–4792.

    Article  PubMed  CAS  Google Scholar 

  • Baumann O (2004) Spatial pattern of nonmuscle myosin-II distribution during the development of the Drosophila compound eye and implications for retinal morphogenesis. Dev Biol 269:519–533.

    Article  PubMed  CAS  Google Scholar 

  • Belyantseva IA, Boger ET, Friedman TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci USA 100:13958–13963.

    Article  PubMed  CAS  Google Scholar 

  • Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Griffith AJ, Friedman TB (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7:148–156.

    Article  PubMed  CAS  Google Scholar 

  • Berg JS, Cheney RE (2002) Myosin-X is an unconventional myosin that undergoes intrafilopodial motility. Nat Cell Biol 4:246–250.

    Article  PubMed  CAS  Google Scholar 

  • Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 113:3439–3451.

    PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794.

    PubMed  CAS  Google Scholar 

  • Bohil AB, Robertson BW, Cheney RE (2006) Myosin-X is a molecular motor that functions in filopodia formation. Proc Natl Acad Sci USA 103:12411–12416.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC (1999) Myosin Va movements in normal and dilute-lethal axons provide support for a dual filament motor complex. J Cell Biol 146:1045–1060.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC (2002) Growth cones contain myosin II bipolar filament arrays. Cell Motil Cytoskeleton 52:91–96.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC (2004) Myosin-dependent transport in neurons. J Neurobiol 58:164–174.

    Article  PubMed  CAS  Google Scholar 

  • Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169.

    PubMed  CAS  Google Scholar 

  • Brown J, Bridgman PC (2003a) Role of myosin II in axon outgrowth. J Histochem Cytochem 51:421–428.

    PubMed  CAS  Google Scholar 

  • Brown ME, Bridgman PC (2003b) Retrograde flow rate is increased in growth cones from myosin IIB knockout mice. J Cell Sci 116:1087–1094.

    Article  PubMed  CAS  Google Scholar 

  • Brown ME, Bridgman PC (2004) Myosin function in nervous and sensory systems. J Neurobiol 58:118–130.

    Article  PubMed  CAS  Google Scholar 

  • Brown JA, Wysolmerski RB, Bridgman PC (2009) Dorsal root ganglion neurons react to semaphorin 3A application through a biphasic response that requires multiple myosin II isoforms. Mol Biol Cell 20(4):1167–1179.

    Article  PubMed  CAS  Google Scholar 

  • Buss F, Spudich G, Kendrick-Jones J (2004) Myosin VI, cellular functions and motor properties. Annu Rev Cell Dev Biol 20:649–676.

    Article  PubMed  CAS  Google Scholar 

  • Cameron RS, Liu C, Mixon AS, Pihkala JP, Rahn RJ, Cameron PL (2007) Myosin16b: the COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil Cytoskeleton 64:19–48.

    Article  PubMed  CAS  Google Scholar 

  • Cheney RE, Mooseker MS (1992) Unconventional myosins. Curr Opin Cell Biol 4:27–35.

    Article  PubMed  CAS  Google Scholar 

  • Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23.

    PubMed  CAS  Google Scholar 

  • Chieregatti E, Gartner A, Stoffler HE, Bahler M (1998) Myr 7 is a novel myosin IX-RhoGAP expressed in rat brain. J Cell Sci 111:3597–3608.

    PubMed  CAS  Google Scholar 

  • Conti MA, Even-Ram S, Liu C, Yamada KM, Adelstein RS (2004) Defects in cell adhesion and the visceral endoderm following ablation of nonmuscle myosin heavy chain II-A in mice. J Biol Chem 279:41263–41266.

    Article  PubMed  CAS  Google Scholar 

  • Correia SS, Bassani S, Brown TC, Lisé MF, Backos DS, El-Husseini A, Passafaro M, Esteban JA (2008) Motor protein-dependent transport of AMPA receptors into spines during long-term potentiation. Nat Neurosci 11(4):457–466.

    Article  PubMed  CAS  Google Scholar 

  • Cronin MA, Diao F, Tsunoda S (2004) Light-dependent subcellular translocation of Gqalpha in Drosophila photoreceptors is facilitated by the photoreceptor-specific myosin III NINAC. J Cell Sci 117:4797–4806.

    Article  PubMed  CAS  Google Scholar 

  • Dekker-Ohno K, Hayasaka S, Takagishi Y, Oda S, Wakasugi N, Mikoshiba K, Inouye M, Yamamura H (1996) Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res 714:226–230.

    Article  PubMed  CAS  Google Scholar 

  • Delprat B, Michel V, Goodyear R, Yamasaki Y, Michalski N, El-Amraoui A, Perfettini I, Legrain P, Richardson G, Hardelin JP, Petit C (2005) Myosin XVa and whirlin, two deafness gene products required for hair bundle growth, are located at the stereocilia tips and interact directly. Hum Mol Genet 14:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Diefenbach TJ, Latham VM, Yimlamai D, Liu CA, Herman IM, Jay DG (2002) Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone. J Cell Biol 158:1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Donaudy F, Ferrara A, Esposito L, Hertzano R, Ben-David O, Bell RE, Melchionda S, Zelante L, Avraham KB, Gasparini P (2003) Multiple mutations of MYO1A, a cochlear-expressed gene, in sensorineural hearing loss. Am J Hum Genet 72:1571–1577.

    Article  PubMed  CAS  Google Scholar 

  • Dose AC, Burnside B (2000) Cloning and chromosomal localization of a human class III myosin. Genomics 67:333–342.

    Article  PubMed  CAS  Google Scholar 

  • Dumont RA, Zhao YD, Holt JR, Bahler M, Gillespie PG (2002) Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia. J Assoc Res Otolaryngol 3:375–389.

    Article  PubMed  Google Scholar 

  • El-Amraoui A, Petit C (2005) Usher I syndrome, unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci 118:4593–4603.

    Article  PubMed  CAS  Google Scholar 

  • Espindola FS, Espreafico EM, Coelho MV, Martins AR, Costa FR, Mooseker MS, Larson RE (1992) Biochemical and immunological characterization of p190–calmodulin complex from vertebrate brain, a novel calmodulin-binding myosin. J Cell Biol 118:359–368.

    Article  PubMed  CAS  Google Scholar 

  • Espreafico EM, Cheney RE, Matteoli M, Nascimento AA, De Camilli PV, Larson RE, Mooseker MS (1992) Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains. J Cell Biol 119:1541–1557.

    Article  PubMed  CAS  Google Scholar 

  • Evans LL, Bridgman PC (1995) Particles move along actin filament bundles in nerve growth cones. Proc Natl Acad Sci USA 92:10954–10958.

    Article  PubMed  CAS  Google Scholar 

  • Evans LL, Hammer J, Bridgman PC (1997) Subcellular localization of myosin V in nerve growth cones and outgrowth from dilute-lethal neurons. J Cell Sci 110:439–449.

    PubMed  CAS  Google Scholar 

  • Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111:2055–2066.

    PubMed  CAS  Google Scholar 

  • Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516.

    Article  PubMed  CAS  Google Scholar 

  • Foth BJ, Goedecke MC, Soldati D (2006) New insights into myosin evolution and classification. Proc Natl Acad Sci USA 103:3681–3686.

    Article  PubMed  CAS  Google Scholar 

  • Friedman TB, Sellers JR, Avraham KB (1999) Unconventional myosins and the genetics of hearing loss. Am J Med Genet 89:147–157.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G (2006) RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction. J Cell Sci 119:3413–3423.

    Article  PubMed  CAS  Google Scholar 

  • Gallo G, Yee HF Jr, Letourneau PC (2002) Actin turnover is required to prevent axon retraction driven by endogenous actomyosin contractility. J Cell Biol 158:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs D, Kitamoto J, Williams DS (2003) Abnormal phagocytosis by retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. Proc Natl Acad Sci USA 100: 6481–6486.

    Article  PubMed  CAS  Google Scholar 

  • Gibson F, Walsh J, Mburu P, Varela A, Brown KA, Antonio M, Beisel KW, Steel KP, Brown SD (1995) A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374:62–64.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Albanesi JP, Bahler M, Bement WM, Berg JS, Burgess DR, Burnside B, Cheney RE, Corey DP, Coudrier E, de Lanerolle P, Hammer JA, Hasson T, Holt JR, Hudspeth AJ, Ikebe M, Kendrick-Jones J, Korn ED, Li R, Mercer JA, Milligan RA, Mooseker MS, Ostap EM, Petit C, Pollard TD, Sellers JR, Soldati T, Titus MA (2001) Myosin-I nomenclature. J Cell Biol 155:703–704.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Wagner MC, Hudspeth AJ (1993) Identification of a 120 kD hair-bundle myosin located near stereociliary tips. Neuron 11:581–594.

    Article  PubMed  CAS  Google Scholar 

  • Golomb E, Ma X, Jana SS, Preston YA, Kawamoto S, Shoham NG, Goldin E, Conti MA, Sellers JR, Adelstein RS (2004) Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family. J Biol Chem 279:2800–2808.

    Article  PubMed  CAS  Google Scholar 

  • Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI (2002) Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 156:855–865.

    Article  PubMed  CAS  Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.

    Article  PubMed  CAS  Google Scholar 

  • Hasson T, Heintzelman MB, Santos-Sacchi J, Corey DP, Mooseker MS (1995) Expression in cochlea and retina of myosin VIIa, the gene product defective in Usher syndrome type 1B. Proc Natl Acad Sci USA 92:9815–9819.

    Article  PubMed  CAS  Google Scholar 

  • Hasson T, Mooseker MS (1994) Porcine myosin-VI, characterization of a new mammalian unconventional myosin. J Cell Biol 127:425–440.

    Article  PubMed  CAS  Google Scholar 

  • Hicks JL, Liu X, Williams DS (1996) Role of the ninaC proteins in photoreceptor cell structure, ultrastructure of ninaC deletion mutants and binding to actin filaments. Cell Motil Cytoskeleton 35:367–379.

    Article  PubMed  CAS  Google Scholar 

  • Hokanson DE, Ostap EM (2006) Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc Natl Acad Sci USA 103:3118–3123.

    Article  PubMed  CAS  Google Scholar 

  • Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419.

    Article  PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical–genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381.

    Article  PubMed  CAS  Google Scholar 

  • Huang JD, Brady ST, Richards BW, Stenolen D, Resau JH, Copeland NG, Jenkins NA (1999) Direct interaction of microtubule- and actin-based transport motors. Nature 397:267–270.

    Article  PubMed  CAS  Google Scholar 

  • Itoh K, Adelstein RS (1995) Neuronal cell expression of inserted isoforms of vertebrate nonmuscle myosin heavy chain II-B. J Biol Chem 270:14533–14540.

    Article  PubMed  CAS  Google Scholar 

  • Jonsdottir GA, Li R (2004) Dynamics of yeast Myosin I, evidence for a possible role in scission of endocytic vesicles. Curr Biol 14:1604–1609.

    Article  PubMed  CAS  Google Scholar 

  • Kambara T, Ikebe M (2006) A unique ATP hydrolysis mechanism of single-headed processive myosin, myosin IX. J Biol Chem 281:4949–4957.

    Article  PubMed  CAS  Google Scholar 

  • Kappler JA, Starr CJ, Chan DK, Kollmar R, Hudspeth AJ (2004) A nonsense mutation in the gene encoding a zebrafish myosin VI isoform causes defects in hair-cell mechanotransduction. Proc Natl Acad Sci USA 101:13056–13061.

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto S, Adelstein RS (1991) Chicken nonmuscle myosin heavy chains, differential expression of two mRNAs and evidence for two different polypeptides. J Cell Biol 112:915–924.

    Article  PubMed  CAS  Google Scholar 

  • Kellerman KA, Miller KG (1992) An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol 119:823–834.

    Article  PubMed  CAS  Google Scholar 

  • Ketschek AR, Jones SL, Gallo G (2007) Axon extension in the fast and slow lanes: substratum-dependent engagement of myosin II functions. Dev Neurobiol 67(10):1305–1320.

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto J, Libby RT, Gibbs D, Steel KP, Williams DS (2005) Myosin VI is required for normal retinal function. Exp Eye Res 81:116–120.

    Article  PubMed  CAS  Google Scholar 

  • Kollins KM, Hu J, Bridgman PC, Huang YQ, Gallo G (2009) Myosin-II negatively regulates minor process extension and the temporal development of neuronal polarity. Dev Neurobiol 69(5):279–298.

    Article  PubMed  CAS  Google Scholar 

  • Korobova F, Svitkina T (2010) Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol Biol Cell 21(1):165–176.

    Article  PubMed  CAS  Google Scholar 

  • Krendel M, Mooseker MS (2005) Myosins, tails (and heads) of functional diversity. Physiology (Bethesda) 20:239–251.

    CAS  Google Scholar 

  • Krendel M, Osterweil EK, Mooseker MS (2007) Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 581:644–650.

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356:722–725.

    Article  PubMed  CAS  Google Scholar 

  • Langford GM (2002) Myosin-V, a versatile motor for short-range vesicle transport. Traffic 3:859–865.

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Montell C (2004) Light-dependent translocation of visual arrestin regulated by the NINAC myosin III. Neuron 43:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Levi V, Serpinskaya AS, Gratton E, Gelfand V (2006) Organelle transport along microtubules in Xenopus melanophores, evidence for cooperation between multiple motors. Biophys J 90:318–327.

    Article  PubMed  CAS  Google Scholar 

  • Lewis AK, Bridgman PC (1996) Mammalian myosin I alpha is concentrated near the plasma membrane in nerve growth cones. Cell Motil Cytoskeleton 33:130–150.

    Article  PubMed  CAS  Google Scholar 

  • Lewis TL Jr, Mao T, Svoboda K, Arnold DB (2009) Myosin-dependent targeting of transmembrane proteins to neuronal dendrites. Nat Neurosci 12(5):568–576.

    Article  PubMed  CAS  Google Scholar 

  • Li BX, Satoh AK, Ready DF (2007) Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 177:659–669.

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, Miller W, Touchman JW, Jin L, Sullivan SL, Sellers JR, Camper SA, Lloyd RV, Kachar B, Friedman TB, Fridell RA (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61:243–258.

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde F-actin flow in neuronal growth cones. Neuron 16:769–782.

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Forscher P (1995) Growth cone advance is inversely proportional to retrograde F-actin flow. Neuron 14:763–771.

    Article  PubMed  CAS  Google Scholar 

  • Lin HW, Schneider ME, Kachar B (2005) When size matters, the dynamic regulation of stereocilia lengths. Curr Opin Cell Biol 17:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Lise MF, Wong TP, Trinh A, Hines RM, Liu L, Kang R, Hines DJ, Lu J, Goldenring JR, Wang YT, El-Husseini A (2006) Involvement of myosin Vb in glutamate receptor trafficking. J Biol Chem 281:3669–3678.

    Article  PubMed  CAS  Google Scholar 

  • Liu CH, Satoh AK, Postma M, Huang J, Ready DF, Hardie RC (2008) Ca2+-dependent metarhodopsin inactivation mediated by calmodulin and NINAC myosin III. Neuron 59(5):778–789.

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Udovichenko IP, Brown SD, Steel KP, Williams DS (1999) Myosin VIIa participates in opsin transport through the photoreceptor cilium. J Neurosci 19:6267–6274.

    PubMed  CAS  Google Scholar 

  • Liu XZ, Walsh J, Mburu P, Kendrick-Jones J, Cope MJ, Steel KP, Brown SD (1997) Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 16:188–190.

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Bao J, Adelstein RS (2007) Loss of cell adhesion causes hydrocephalus in nonmuscle myosin II-B ablated and mutated mice. Mol Biol Cell 18:2305–2312.

    Article  PubMed  CAS  Google Scholar 

  • Ma X, Kawamoto S, Uribe J, Adelstein RS (2006) Function of the neuron-specific alternatively spliced isoforms of nonmuscle myosin II-B during mouse brain development. Mol Biol Cell 17:2138–2149.

    Article  PubMed  CAS  Google Scholar 

  • Mallavarapu A, Mitchison T (1999) Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J Cell Biol 146:1097–1106.

    Article  PubMed  CAS  Google Scholar 

  • Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226.

    Article  PubMed  CAS  Google Scholar 

  • Mehta AD, Rock RS, Rief M, Spudich JA, Mooseker MS, Cheney RE (1999) Myosin-V is a processive actin-based motor. Nature 400:590–593.

    Article  PubMed  CAS  Google Scholar 

  • Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones ML, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham KB, Gasparini P (2001) MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet 69:635–640.

    Article  PubMed  CAS  Google Scholar 

  • Mercer JA, Seperack PK, Strobel MC, Copeland NG, Jenkins NA (1991) Novel myosin heavy chain encoded by murine dilute coat colour locus. Nature 349:709–713.

    Article  PubMed  CAS  Google Scholar 

  • Mermall V, McNally JG, Miller KG (1994) Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature 369:560–562.

    Article  PubMed  CAS  Google Scholar 

  • Mhatre AN, Li Y, Atkin G, Maghnouj A, Lalwani AK (2006) Expression of Myh9 in the mammalian cochlea, localization within the stereocilia. J Neurosci Res 84:809–818.

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Bower E, Levitt P, Li D, Chantler PD (1992) Myosin II distribution in neurons is consistent with a role in growth cone motility but not synaptic vesicle mobilization. Neuron 8:25–44.

    Article  PubMed  CAS  Google Scholar 

  • Miller KE, Sheetz MP (2000) Characterization of myosin V binding to brain vesicles. J Biol Chem 275:2598–2606.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772.

    Article  PubMed  CAS  Google Scholar 

  • Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M (2000) Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 28:233–244.

    Article  PubMed  CAS  Google Scholar 

  • Mochida S, Kobayashi H, Matsuda Y, Yuda Y, Muramoto K, Nonomura Y (1994) Myosin II is involved in transmitter release at synapses formed between rat sympathetic neurons in culture. Neuron 13:1131–1142.

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Rubin GM (1988) The Drosophila ninaC locus encodes two photoreceptor cell specific proteins with domains homologous to protein kinases and the myosin heavy chain head. Cell 52:757–772.

    Article  PubMed  CAS  Google Scholar 

  • Mooseker MS, Cheney RE (1995) Unconventional myosins. Annu Rev Cell Dev Biol 11:633–675.

    Article  PubMed  CAS  Google Scholar 

  • Morris RL, Hollenbeck PJ (1995) Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J Cell Biol 131:1315–1326.

    Article  PubMed  CAS  Google Scholar 

  • Muller RT, Honnert U, Reinhard J, Bahler M (1997) The rat myosin myr 5 is a GTPase-activating protein for Rho in vivo, essential role of arginine 1695. Mol Biol Cell 8:2039–2053.

    PubMed  CAS  Google Scholar 

  • Naisbitt S, Valtschanoff J, Allison DW, Sala C, Kim E, Craig AM, Weinberg RJ, Sheng M (2000) Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci 20:4524–4534.

    PubMed  CAS  Google Scholar 

  • Nash JE, Appleby VJ, Corrêa SA, Wu H, Fitzjohn SM, Garner CC, Collingridge GL, Molnár E (2010) Disruption of the interaction between myosin VI and SAP97 is associated with a reduction in the number of AMPARs at hippocampal synapses. J Neurochem 112(3):677–690.

    Article  PubMed  CAS  Google Scholar 

  • Ng KP, Kambara T, Matsuura M, Burke M, Ikebe M (1996) Identification of myosin III as a protein kinase. Biochemistry 35:9392–9399.

    Article  PubMed  CAS  Google Scholar 

  • Norden C, Young S, Link BA, Harris WA (2009) Actomyosin is the main driver of interkinetic nuclear migration in the retina. Cell 138(6):1195–1208.

    Article  PubMed  CAS  Google Scholar 

  • Osterweil E, Wells DG, Mooseker MS (2005) A role for myosin VI in postsynaptic structure and glutamate receptor endocytosis. J Cell Biol 168:329–338.

    Article  PubMed  CAS  Google Scholar 

  • Park H, Ramamurthy B, Travaglia M, Safer D, Chen LQ, Franzini-Armstrong C, Selvin PR, Sweeney HL (2006) Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell 21:331–336.

    Article  PubMed  CAS  Google Scholar 

  • Patel KG, Liu C, Cameron PL, Cameron RS (2001) Myr 8, a novel unconventional myosin expressed during brain development associates with the protein phosphatase catalytic subunits 1alpha and 1gamma1. J Neurosci 21:7954–7968.

    PubMed  CAS  Google Scholar 

  • Petritsch C, Tavosanis G, Turck CW, Jan LY, Jan YN (2003) The Drosophila myosin VI Jaguar is required for basal protein targeting and correct spindle orientation in mitotic neuroblasts. Dev Cell 4:273–281.

    Article  PubMed  CAS  Google Scholar 

  • Phillips KR, Tong S, Goodyear R, Richardson GP, Cyr JL (2006) Stereociliary myosin-1c receptors are sensitive to calcium chelation and absent from cadherin 23 mutant mice. J Neurosci 26:10777–10788.

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Korn ED (1973) Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem 248:4682–4690.

    PubMed  CAS  Google Scholar 

  • Porter JA, Montell C (1993) Distinct roles of the Drosophila ninaC kinase and myosin domains revealed by systematic mutagenesis. J Cell Biol 122:601–612.

    Article  PubMed  CAS  Google Scholar 

  • Post PL, Bokoch GM, Mooseker MS (1998) Human myosin-IXb is a mechanochemically active motor and a GAP for rho. J Cell Sci 111:941–950.

    PubMed  CAS  Google Scholar 

  • Post PL, Tyska MJ, O’Connell CB, Johung K, Hayward A, Mooseker MS (2002) Myosin-IXb is a single-headed and processive motor. J Biol Chem 277:11679–11683.

    Article  PubMed  CAS  Google Scholar 

  • Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein, evidence for a Ca2+-dependent interaction with the synaptobrevin–synaptophysin complex. J Cell Biol 137:1589–1601.

    Article  PubMed  CAS  Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447.

    Article  PubMed  CAS  Google Scholar 

  • Prosser HM, Rzadzinska AK, Steel KP, Bradley A (2008) Mosaic complementation demonstrates a regulatory role for myosin VIIa in actin dynamics of stereocilia. Mol Cell Biol 28(5):1702–1712.

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VM, Andreadis A, Julien JP, Bridgman PC, Nixon RA (2002) Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J Cell Biol 159:279–290.

    Article  PubMed  CAS  Google Scholar 

  • Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51.

    Article  PubMed  CAS  Google Scholar 

  • Reinhard J, Scheel AA, Diekmann D, Hall A, Ruppert C, Bahler M (1995) A novel type of myosin implicated in signalling by rho family GTPases. Embo J 14:697–704.

    PubMed  CAS  Google Scholar 

  • Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118.

    Article  PubMed  CAS  Google Scholar 

  • Rochlin MW, Itoh K, Adelstein RS, Bridgman PC (1995) Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 108:3661–3670.

    PubMed  CAS  Google Scholar 

  • Rodriguez OC, Cheney RE (2002) Human myosin-Vc is a novel class V myosin expressed in epithelial cells. J Cell Sci 115:991–1004.

    PubMed  CAS  Google Scholar 

  • Ruppert C, Godel J, Muller RT, Kroschewski R, Reinhard J, Bahler M (1995) Localization of the rat myosin I molecules myr 1 and myr 2 and in vivo targeting of their tail domains. J Cell Sci 108:3775–3786.

    PubMed  CAS  Google Scholar 

  • Ruppert C, Kroschewski R, Bahler M (1993) Identification, characterization and cloning of myr 1, a mammalian myosin-I. J Cell Biol 120:1393–1403.

    Article  PubMed  CAS  Google Scholar 

  • Ryu J, Liu L, Wong TP, Wu DC, Burette A, Weinberg R, Wang YT, Sheng M (2006) A critical role for myosin IIb in dendritic spine morphology and synaptic function. Neuron 49:175–182.

    Article  PubMed  CAS  Google Scholar 

  • Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J Cell Biol 164:887–897.

    Article  PubMed  CAS  Google Scholar 

  • Salles FT, Merritt RC Jr, Manor U, Dougherty GW, Sousa AD, Moore JE, Yengo CM, Dosé AC, Kachar B (2009) Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 11(4):443–450.

    Article  PubMed  CAS  Google Scholar 

  • Satoh AK, Li BX, Xia H, Ready DF (2008) Calcium-activated Myosin V closes the Drosophila pupil. Curr Biol 18(13):951–955.

    Article  PubMed  CAS  Google Scholar 

  • Schaar BT, McConnell SK (2005) Cytoskeletal coordination during neuronal migration. Proc Natl Acad Sci USA 102(38):13652–13657.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AW, Kabir N, Forscher P (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J Cell Biol 158:139–152.

    Article  PubMed  CAS  Google Scholar 

  • Schenk J, Wilsch-Bräuninger M, Calegari F, Huttner WB (2009) Myosin II is required for interkinetic nuclear migration of neural progenitors. Proc Natl Acad Sci USA 106(38):16487–16492.

    Article  PubMed  Google Scholar 

  • Schneider ME, Dose AC, Salles FT, Chang W, Erickson FL, Burnside B, Kachar B (2006) A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J Neurosci 26:10243–10252.

    Article  PubMed  CAS  Google Scholar 

  • Schnell E, Nicoll RA (2001) Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J Neurophysiol 85:1498–1501.

    PubMed  CAS  Google Scholar 

  • Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5:393–399.

    Article  PubMed  CAS  Google Scholar 

  • Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham KB, Nicolson T (2004) Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol 272:328–338.

    Article  PubMed  CAS  Google Scholar 

  • Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566.

    PubMed  CAS  Google Scholar 

  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214:331–341.

    Article  PubMed  CAS  Google Scholar 

  • Sellers JR, Veigel C (2006) Walking with myosin V. Curr Opin Cell Biol 18:68–73.

    Article  PubMed  CAS  Google Scholar 

  • Sherr EH, Joyce MP, Greene LA (1993) Mammalian myosin I alpha, I beta, and I gamma, new widely expressed genes of the myosin I family. J Cell Biol 120:1405–1416.

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

    Article  PubMed  CAS  Google Scholar 

  • Solecki DJ, Trivedi N, Govek EE, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63:63–80.

    Article  PubMed  CAS  Google Scholar 

  • Sousa AD, Berg JS, Robertson BW, Meeker RB, Cheney RE (2006) Myo10 in brain, developmental regulation, identification of a headless isoform and dynamics in neurons. J Cell Sci 119:184–194.

    Article  PubMed  CAS  Google Scholar 

  • Spudich G, Chibalina MV, Au JS, Arden SD, Buss F, Kendrick-Jones J (2007) Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat Cell Biol 9:176–183.

    Article  PubMed  CAS  Google Scholar 

  • Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K, Mercer JA, Holt JR, Gillespie PG (2005) Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47:541–553.

    Article  PubMed  CAS  Google Scholar 

  • Stepanyan R, Belyantseva IA, Griffith AJ, Friedman TB, Frolenkov GI (2006) Auditory mechanotransduction in the absence of functional myosin-XVa. J Physiol 576:801–808.

    Article  PubMed  CAS  Google Scholar 

  • Stoffler HE, Ruppert C, Reinhard J, Bahler M (1995) A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell–cell contacts. J Cell Biol 129:819–830.

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Martin AC, Drubin DG (2006) Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 11:33–46.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Errante LD, Belotserkovsky V, Forscher P (1998) The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate–cytoskeletal coupling. J Cell Biol 141:227–240.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Espindola FS, Lin CH, Forscher P, Mooseker MS (2000) Localization of unconventional myosins V and VI in neuronal growth cones. J Neurobiol 42:370–382.

    Article  PubMed  CAS  Google Scholar 

  • Suter DM, Forscher P (2000) Substrate–cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J Neurobiol 44:97–113.

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Verkhovsky AB, McQuade KM, Borisy GG (1997) Analysis of the actin–myosin II system in fish epidermal keratocytes, mechanism of cell body translocation. J Cell Biol 139:397–415.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Houdusse A (2007) What can myosin VI do in cells? Curr Opin Cell Biol 19:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Tabb JS, Molyneaux BJ, Cohen DL, Kuznetsov SA, Langford GM (1998) Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci 111:3221–3234.

    PubMed  CAS  Google Scholar 

  • Takagishi Y, Futaki S, Itoh K, Espreafico EM, Murakami N, Murata Y, Mochida S (2005) Localization of myosin II and V isoforms in cultured rat sympathetic neurones and their potential involvement in presynaptic function. J Physiol 569:195–208.

    Article  PubMed  CAS  Google Scholar 

  • Takagishi Y, Hashimoto K, Kayahara T, Watanabe M, Otsuka H, Mizoguchi A, Kano M, Murata Y (2007) Diminished climbing fiber innervation of Purkinje cells in the cerebellum of myosin Va mutant mice and rats. Dev Neurobiol 67:909–923.

    Article  PubMed  CAS  Google Scholar 

  • Takagishi Y, Oda S, Hayasaka S, Dekker-Ohno K, Shikata T, Inouye M, Yamamura H (1996) The dilute-lethal (dl) gene attacks a Ca2+ store in the dendritic spine of Purkinje cells in mice. Neurosci Lett 215:169–172.

    PubMed  CAS  Google Scholar 

  • Tullio AN, Bridgman PC, Tresser NJ, Chan CC, Conti MA, Adelstein RS, Hara Y (2001) Structural abnormalities develop in the brain after ablation of the gene encoding nonmuscle myosin II-B heavy chain. J Comp Neurol 433:62–74.

    Article  PubMed  CAS  Google Scholar 

  • Turney SG, Bridgman PC (2005) Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat Neurosci 8:717–719.

    Article  PubMed  CAS  Google Scholar 

  • Tyska MJ, Mackey AT, Huang JD, Copeland NG, Jenkins NA, Mooseker MS (2005) Myosin-1a is critical for normal brush border structure and composition. Mol Biol Cell 16:2443–2457.

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli LA, Lah JJ, Fang G, Goldenring JR, Levey AI (2002) Rab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor. J Neurosci 22:9776–9784.

    PubMed  CAS  Google Scholar 

  • Wagner MC, Barylko B, Albanesi JP (1992) Tissue distribution and subcellular localization of mammalian myosin I. J Cell Biol 119:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Walikonis RS, Jensen ON, Mann M, Provance DW Jr, Mercer JA, Kennedy MB (2000) Identification of proteins in the postsynaptic density fraction by mass spectrometry. J Neurosci 20:4069–4080.

    PubMed  CAS  Google Scholar 

  • Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S, Lee MK, Kanaan M, King MC, Avraham KB (2002) From flies’ eyes to our ears, mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci USA 99:7518–7523.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Edwards JG, Riley N, Provance DW Jr, Karcher R, Li XD, Davison IG, Ikebe M, Mercer JA, Kauer JA, Ehlers MD (2008) Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135(3):535–548.

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, Morton CC, Morell RJ, Noben-Trauth K, Camper SA, Friedman TB (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451.

    Article  PubMed  CAS  Google Scholar 

  • Wang FS, Wolenski JS, Cheney RE, Mooseker MS, Jay DG (1996) Function of myosin-V in filopodial extension of neuronal growth cones. Science 273:660–663.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Nomura K, Ohyama A, Ishikawa R, Komiya Y, Hosaka K, Yamauchi E, Taniguchi H, Sasakawa N, Kumakura K, Ushiki T, Sato O, Ikebe M, Igarashi M (2005) Myosin-Va regulates exocytosis through the submicromolar Ca2+-dependent binding of syntaxin-1A. Mol Biol Cell 16:4519–4530.

    Article  PubMed  CAS  Google Scholar 

  • Weil D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, Mburu P, Varela A, Levilliers J, Weston MD, et al. (1995) Defective myosin VIIA gene responsible for Usher syndrome type 1B. Nature 374:60–61.

    Article  PubMed  CAS  Google Scholar 

  • Weil D, Kussel P, Blanchard S, Levy G, Levi-Acobas F, Drira M, Ayadi H, Petit C (1997) The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16:191–193.

    Article  PubMed  CAS  Google Scholar 

  • Wells AL, Lin AW, Chen LQ, Safer D, Cain SM, Hasson T, Carragher BO, Milligan RA, Sweeney HL (1999) Myosin VI is an actin-based motor that moves backwards. Nature 401:505–508.

    Article  PubMed  CAS  Google Scholar 

  • Wes PD, Xu XZ, Li HS, Chien F, Doberstein SK, Montell C (1999) Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci 2:447–453.

    Article  PubMed  CAS  Google Scholar 

  • Wirth JA, Jensen KA, Post PL, Bement WM, Mooseker MS (1996) Human myosin-IXb, an unconventional myosin with a chimerin-like rho/rac GTPase-activating protein domain in its tail. J Cell Sci 109:653–661.

    PubMed  CAS  Google Scholar 

  • Wolfrum U, Schmitt A (2000) Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 46:95–107.

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Nash JE, Zamorano P, Garner CC (2002) Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem 277:30928–30934.

    Article  PubMed  CAS  Google Scholar 

  • Wylie SR, Chantler PD (2001) Separate but linked functions of conventional myosins modulate adhesion and neurite outgrowth. Nat Cell Biol 3:88–92.

    Article  PubMed  CAS  Google Scholar 

  • Wylie SR, Chantler PD (2003) Myosin IIA drives neurite retraction. Mol Biol Cell 14:4654–4666.

    Article  PubMed  CAS  Google Scholar 

  • Wylie SR, Wu PJ, Patel H, Chantler PD (1998) A conventional myosin motor drives neurite outgrowth. Proc Natl Acad Sci USA 95:12967–12972.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Kovacs M, Sakamoto T, Zhang F, Kiehart DP, Sellers JR (2006) Dimerized Drosophila myosin VIIa, a processive motor. Proc Natl Acad Sci USA 103:5746–5751.

    Article  PubMed  CAS  Google Scholar 

  • Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV (2006) BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 9:1009–1018.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Fujii R, Watanabe Y, Okabe S, Fukui K, Takumi T (2006) Myosin-Va facilitates the accumulation of mRNA/protein complex in dendritic spines. Curr Biol 16:2345–2351.

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Berg JS, Li Z, Wang Y, Lang P, Sousa AD, Bhaskar A, Cheney RE, Stromblad S (2004) Myosin-X provides a motor-based link between integrins and the cytoskeleton. Nat Cell Biol 6:523–531.

    Article  PubMed  CAS  Google Scholar 

  • Zhao LP, Koslovsky JS, Reinhard J, Bahler M, Witt AE, Provance DW Jr, Mercer JA (1996) Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. Proc Natl Acad Sci USA 93:10826–10831.

    Article  PubMed  CAS  Google Scholar 

  • Zhu XJ, Wang CZ, Dai PG, Xie Y, Song NN, Liu Y, Du QS, Mei L, Ding YQ, Xiong WC (2007) Myosin X regulates netrin receptors and functions in axonal path-finding. Nat Cell Biol 9:184–192.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Peter Hollenbeck, Richard Cheney, Mark Mooseker, Boris Decourt, and Aih Cheun Lee for their valuable comments on this book chapter. I am also grateful to Virginia Livingston for editing the text. Because of space limitations it was not possible to cite all the relevant articles in this field, and I would like to apologize for anything that has been omitted. Work in the Suter Lab is supported by NIH grant NS049233.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Suter, D.M. (2011). Functions of Myosin Motor Proteins in the Nervous System. In: Gallo, G., Lanier, L. (eds) Neurobiology of Actin. Advances in Neurobiology, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7368-9_4

Download citation

Publish with us

Policies and ethics