Skip to main content

Unfolding and Refolding of Disulfide Proteins Using the Method Disulfide Scrambling

  • Chapter
  • First Online:
Folding of Disulfide Proteins

Part of the book series: Protein Reviews ((PRON,volume 14))

  • 1176 Accesses

Abstract

Unfolding and refolding of disulfide proteins can be investigated by the method of disulfide scrambling which is based on the reversible conversion between the native (N) and scrambled isomers (X). The method of disulfide scrambling presents a number of unique features in elucidation of pathways of protein unfolding and refolding. (a) It allows trapping and isolation of diverse intermediates (unfolding and folding) for further structural analysis. (b) It demonstrates that protein denaturation and unfolding can be quantified independently. Denaturation is calculated by the conversion of native (N) to non-native X-isomers. Unfolding is measured by the progressive unfolding of X-isomers. (c) It shows that folding experiment can be initiated with a structurally defined X-isomer possessing the highest free energy among all unfolded X-isomers. (d) It reveals that the energy landscape of conformational heterogeneity (unfolding and refolding) can be illustrated by a diamond-shaped model. At two extreme ends of the energy landscape, the conformational heterogeneity is reduced to minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-LA:

α-Lactalbumin

HPLC:

High-pressure liquid chromatography

BPTI:

Bovine pancreatic trypsin inhibitor

TAP:

Tick anticoagulant peptide

References

  • Antuch W, Güntert P, Billeter M, Hawthorne T, Grossenbacher H, Wüthrich K (1994) NMR solution structure of recombinant tick anticoagulant protein (rTAP), a factor Xa inhibitor from the tick Ornithodoros moubata. FEBS Lett 352:251–257

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Aviles FX, Chang J-Y, Ventura S (2006) Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 31:292–301

    Article  PubMed  CAS  Google Scholar 

  • Arias-Moreno X, Arolas JL, Aviles FX, Sancho J, Ventura S (2008) Scrambled isomers as key intermediates in the oxidative folding of liogand binding module 5 of the low density lipoprotein receptor. J Biol Chem 283:13627–13637

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Sanglas L, Lorenzo J, Bronsoms S, Aviles FX (2009) Insights into the two-domain architecture of the metallocarboxypeptidase inhibitor from the Ascaris parasite inferred from the mechanism of its oxidative folding. Biochemistry 48:8225–8232

    Article  PubMed  CAS  Google Scholar 

  • Cemazar M, Zahariev S, Lopez JJ, Carugo O, Jones JA, Hore PJ, Pongor S (2003) Oxidative folding intermediates with nonnative disulfide bridges between adjacent cysteine residues. Proc Natl Acad Sci USA 100:5754–5759

    Article  PubMed  CAS  Google Scholar 

  • Cemazar M, Zahariev S, Pongor S, Hore PJ (2004) Oxidative folding of Amaranthus alpha-amylase inhibitor: disulfide bond formation and conformational folding. J Biol Chem 279:16697–16705

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (1994) Controlling the speed of hirudin folding. Biochem J 300:643–650

    PubMed  CAS  Google Scholar 

  • Chang J-Y, Canals F, Schindler P, Querol E, Aviles FX (1994) The disulfide folding pathway of potato carboxypeptidase inhibitor. J Biol Chem 269:22087–22094

    PubMed  CAS  Google Scholar 

  • Chang J-Y (1996) The disulfide folding pathway of tick anticoagulant peptide, a kunitz-type inhibitor structurally homologous to BPTI. Biochemistry 35:11702–11709

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (1997) A two-stage mechanism for the reductive unfolding of disulfide-containing proteins. J Biol Chem 272:69–75

    PubMed  CAS  Google Scholar 

  • Chang J-Y, Kumar TKS, Yu C (1998) Unfolding and refolding of cardiotoxin III elucidated by reversible conversion of the native and scrambled species. Biochemistry 37:36745–6751

    Google Scholar 

  • Chang J-Y (1999a) Denatured state of tick anticoagulant peptide. J Biol Chem 274:123–128

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (1999b) Quantitative analysis of the native and scrambled ribonuclease A. Anal Biochem 268:147–150

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Maerki W, Lai PH (1999) Analysis of the extent of unfolding of denatured insulin-like growth factor. Protein Sci 8:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Li L, Canals F, Aviles FX (2000) The unfolding pathway and conformational stability of potato carboxypeptidase inhibitor. J Biol Chem 275:14205–14211

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Ballatore A (2000) The structure of denatured bovine pancreatic trypsin inhibitor (BPTI). FEBS Lett 473:183–187

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Bulychev A, Li L (2001) A stabilized molten globule protein. FEBS Lett 487:298–300

    Article  Google Scholar 

  • Chang J-Y, Li L (2001) The structure of denatured alpha-lactalbumin elucidated by the technique of disulfide scrambling. J Biol Chem 276:9705–9712

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (2002) The folding pathway of alpha-lactalbumin elucidated by the technique of disulfide scrambling. J Biol Chem 277:120–126

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Li L (2002) The unfolding mechanism and the disulfide structures of denatured lysozyme. FEBS Lett 511:73–78

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Li L (2005) Divergent folding pathways of two homologous proteins, BPTI and tick anticoagulant peptide. Arch Biochem Biophys 437:85–95

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Lu B-Y, Lin C-J, Yu C (2006) Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III. FEBS Lett 580:656–660

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Lin C-J, Salamanca S, Pangburn MK, Wetsel RA (2008) Denaturation and Unfolding of Human Anaphylatoxin C3a: An unusually low covalent stability of its native disulfide bonds. Arch Biochem Biophys 480:104–110

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y (2009) Structural heterogeneity of 6M GdmCl denatured proteins: Implications for the mechanism of protein folding. Biochemistry 48:9340–9346

    Article  PubMed  CAS  Google Scholar 

  • Chang J-Y, Bao-Yuan-Lu, Li Li (2009) Fast and slow tracks in lysozyme folding elucidated by the technique of disulfide scrambling. Protein J 28:300–304

    Google Scholar 

  • Chatrenet B, Chang J-Y (1993) The disulfide folding pathway of hirudin elucidated by stop/go folding experiments. J Biol Chem 268:20988–20996

    PubMed  CAS  Google Scholar 

  • Creighton TE (1986) Disulfide bonds as probes of protein folding pathways. Methods Enzymol 131:83–106

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1990) Protein folding. Biochem J 270:1–16

    PubMed  CAS  Google Scholar 

  • Creighton TE (1992) The disulfide folding pathway of BPTI. Science 256:111–114

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (1996) Insights into protein folding from NMR. Annu Rev Phys Chem 47:369–395

    Article  PubMed  CAS  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  PubMed  CAS  Google Scholar 

  • Dill KA, Chan HS (1997) From Levinthal to pathways to funnels. Nat Struct Biol 4:10–18

    Article  PubMed  CAS  Google Scholar 

  • Englander SW, Mayne L (1992) Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct 21:243–265

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261

    Article  PubMed  CAS  Google Scholar 

  • Gorovits BM, Seale JW, Horowitz PM (1995) Residual structure in urea-denatured chaperonin GroEL. Biochemistry 34:13928–13933

    Article  PubMed  CAS  Google Scholar 

  • Kiefhaber T (1995) Kinetic traps in lysozyme folding. Proc Natl Acad Sci USA 92:9029–9033

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103

    Article  PubMed  CAS  Google Scholar 

  • Kuwajima K (1996) The molten globule state of alpha-lactalbumin. FASEB J 10:102–109

    PubMed  CAS  Google Scholar 

  • Lim-Wilby MSL, Hallenga K, De Maeyer M, Lasters I, Vlasuk GP, Brunck TK (1995) NMR structure determination of tick anticoagulant peptide. Protein Sci 4:178–186

    Article  PubMed  CAS  Google Scholar 

  • Lin C-H, Li L, Lyu P-C, Chang J-Y (2004) Distinct unfolding and refolding pathways of lipid transfer proteins LTP-1 and LTP-2. Protein J 23:553–566

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Baldwin RL (1999) The 28–111 disulfide bond constrains the alpha-lactalbumin molten globule and weakens its cooperativity of folding. Proc Natl Acad Sci USA 96:11283–11287

    Article  PubMed  CAS  Google Scholar 

  • Matagne A, Dobson CM (1998) The folding process of hen lysozyme: a perspective from the “new view”. Cell Mol Life Sci 54:363–371

    Article  PubMed  CAS  Google Scholar 

  • Matagne A, Radford SE, Dobson CM (1997) Fast and slow tracks in lysozyme folding: insight into the role of domains in the folding process. J Mol Biol 267:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Min CY, Qiao ZS, Feng YM (2004) Unfolding of human proinsulin, intermediates and possible role of its C-peptide in folding/unfolding. Eur J Biochem 271:1737–1747

    Article  PubMed  CAS  Google Scholar 

  • Mizuguchi M, Masaki K, Nitta K (1999) The molten globule state of a chimera of human alpha-lactalbumin and equine lysozyme. J Mol Biol 292:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Neri D, Billeter M, Wider G, Wuthrich K (1992) NMR determination of residual structure in a urea-denatured protein, the 434-repressor. Science 257:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Onuchic JN, Wolynes PG, Luthey-Schulten Z, Socci ND (1995) Toward an outline of the topography of a realistic protein-folding funnel. Proc Natl Acad Sci USA 92:3626–3630

    Article  PubMed  CAS  Google Scholar 

  • Pace CN (1986) Determination and analysis of urea and GdmCl denaturation curves. Methods Enzymol 131:266–280

    Article  PubMed  CAS  Google Scholar 

  • Pace CN, Laurents DV, Thomson JA (1990) pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry 29:2564–2572

    Article  PubMed  CAS  Google Scholar 

  • Ptitsyn OB (1995) Molten globule and protein folding. Adv Protein Chem 47:83–229

    Article  PubMed  CAS  Google Scholar 

  • Qiao ZS, Min CY, Hua QX, Weiss MA, Feng YM (2003) Kinetic intermediates, putative disulfide forming pathway, folding initiation site and potential role of C-terminal peptide in folding process. J Biol Chem 278:17800–17809

    Article  PubMed  CAS  Google Scholar 

  • Radford SE, Dobson CM, Evans PA (1992) The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358:302–307

    Article  PubMed  CAS  Google Scholar 

  • Redfield C, Schulman BA, Milhollen MA, Kim PS, Dobson CM (1999) Alpha-lactalbumin forms a compact molten globule in the absence of disulfide bonds. Nat Struct Biol 6:948–952

    Article  PubMed  CAS  Google Scholar 

  • Rothwarf D, Li Y-J, Scheraga HA (1998) Regeneration of bovine pancreatic ribonuclease A: identification of two native-like three-disulfide intermediates involved in separate pathways. Biochemistry 37:3760–3766

    Article  PubMed  CAS  Google Scholar 

  • Salamanca S, Li L, Vendrell J, Aviles FX, Chang J-Y (2003) Major kinetic traps for the oxidative folding of leech carboxypeptidase inhibitor. Biochemistry 42:6754–6761

    Article  PubMed  CAS  Google Scholar 

  • Salamanca S, Villegas V, Vendrell J, Aviles FX, Chang J-Y (2002) The unfolding pathway of leech carboxypeptidase inhibitor. J Biol Chem 277:17538–17543

    Article  PubMed  CAS  Google Scholar 

  • Scheraga HA, Wedemeyer WJ, Welker E (2001) Bovine pancreatic ribonuclease A: oxidative and conformational folding studies. Methods Enzymol 341:189–221

    Article  PubMed  CAS  Google Scholar 

  • Shortle DR (1996) Structural analysis of non-native states of proteins by NMR methods. Curr Opin Struct Biol 6:24–30

    Article  PubMed  CAS  Google Scholar 

  • Shortle D, Abeygunawardana C (1993) NMR analysis of the residual structure in the denatured state of a mutant of staphylococcal nuclease. Structure 1:121–134

    Article  PubMed  CAS  Google Scholar 

  • Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8M urea. Science 293:487–489

    Article  PubMed  CAS  Google Scholar 

  • Singh RR, Chang J-Y (2004) Investigating conformational stability of bovine pancreatic phospholipase A2. A novel concept in evaluating the contribution of “native-framework” of disulfides to the global conformational stability of proteins. Biochem J 377:685–692

    Article  PubMed  CAS  Google Scholar 

  • Socci ND, Onuchic JN, Wolynes PG (1998) Protein folding mechanisms and the multidimensional folding funnel. Proteins 32:136–158

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1991) Re-examination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Welker E, Narayan M, Wedemeyer WJ, Scheraga HA (2001) Structural determinants of oxidative folding in proteins. Proc Natl Acad Sci 98:2312–2316

    Article  PubMed  CAS  Google Scholar 

  • Wildegger G, Kiefhaber T (1997) Three-state model for lysozyme folding: triangular folding mechanism with an energetically trapped intermediate. J Mol Biol 270:294–304

    Article  PubMed  CAS  Google Scholar 

  • Wu LC, Peng ZY, Kim PS (1995) Bipartite structure of the alpha-lactalbumin molten globule. Nat Struct Biol 2:281–286

    Article  PubMed  CAS  Google Scholar 

  • Wu LC, Kim PS (1998) A specific hydrophobic core in the alpha-lactalbumin molten globule. J Mol Biol 280:175–182

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rowen J. Y. Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, R.J.Y. (2011). Unfolding and Refolding of Disulfide Proteins Using the Method Disulfide Scrambling. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_5

Download citation

Publish with us

Policies and ethics