Skip to main content

Cystine Knot Folding in Cyclotides

  • Chapter
  • First Online:
Folding of Disulfide Proteins

Part of the book series: Protein Reviews ((PRON,volume 14))

Abstract

Cyclotides are naturally occurring plant-based proteins of approximately 30 amino acids in size that contain a head-to-tail cyclized backbone and a cystine knot motif formed by their three conserved disulfide bonds. Their exceptional stability and unique topology make them valuable frameworks in drug design or protein engineering applications. To facilitate such applications and to explore structure–activity relationships of cyclotides it is useful to be able to chemically synthesize them, a process that is readily achieved via solid phase peptide synthesis followed by oxidative folding. This chapter describes what is known about the oxidative folding of cyclotides, both in chemical folding buffers and assisted by a protein disulfide isomerase enzyme isolated from a cyclotide-producing plant. Formation of the cystine knot motif is readily achieved, despite its apparent topological complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barry DG, Daly NL, Clark RJ et al (2003) Linearization of a naturally occurring circular protein maintains structure but eliminates hemolytic activity. Biochemistry 42:6688–6695

    Article  PubMed  CAS  Google Scholar 

  • Buczek O, Olivera BM, Bulaj G (2004) Propeptide does not act as an intramolecular chaperone but facilitates protein disulfide isomerase-assisted folding of a conotoxin precursor. Biochemistry 43:1093–1101

    Article  PubMed  CAS  Google Scholar 

  • Burman R, Gruber CW, Rizzardi K et al (2010) Cyclotide proteins and precursors from the genus Gloeospermum: filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71:13–20

    Article  PubMed  CAS  Google Scholar 

  • Camarero JA, Kimura RH, Woo Y-H et al (2007) Biosynthesis of a fully functional cyclotide inside living bacterial cells. Chembiochem 8:1363–1366

    Article  PubMed  CAS  Google Scholar 

  • CÄ›maĹľar M, Daly NL, Haggblad S et al (2006) Knots in rings: the circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate. J Biol Chem 281:8224–8232

    Article  PubMed  Google Scholar 

  • Chang JY, Li L, Bulychev A (2000) The underlying mechanism for the diversity of disulfide folding pathways. J Biol Chem 275:8287–8289

    Article  PubMed  CAS  Google Scholar 

  • Chiche L, Heitz A, Gelly JC et al (2004) Squash inhibitors: from structural motifs to macrocyclic knottins. Curr Protein Pept Sci 5:341–349

    Article  PubMed  CAS  Google Scholar 

  • Colgrave ML, Craik DJ (2004) Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: the importance of the cyclic cystine knot. Biochemistry 43:5965–5975

    Article  PubMed  CAS  Google Scholar 

  • Colgrave ML, Kotze AC, Huang YH et al (2008a) Cyclotides: natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47:5581–5589

    Article  PubMed  CAS  Google Scholar 

  • Colgrave ML, Kotze AC, Ireland DC et al (2008b) The anthelmintic activity of the cyclotides: natural variants with enhanced activity. Chembiochem 9:1939–1945

    Article  PubMed  CAS  Google Scholar 

  • Colgrave ML, Kotze AC, Kopp S et al (2009) Anthelmintic activity of cyclotides: in vitro studies with canine and human hookworms. Acta Trop 109:163–166

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ (2001) Plant cyclotides: circular, knotted peptide toxins. Toxicon 39:1809–1813

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ (2006) Seamless proteins tie up their loose ends. Science 311:1563–1564

    Article  PubMed  Google Scholar 

  • Craik DJ, Daly NL, Bond T et al (1999) Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J Mol Biol 294:1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Daly NL, Waine C (2001) The cystine knot motif in toxins and implications for drug design. Toxicon 39:43–60

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, Daly NL, Mulvenna J et al (2004) Discovery, structure and biological activities of the cyclotides. Curr Protein Pept Sci 5:297–315

    Article  PubMed  CAS  Google Scholar 

  • Craik DJ, CÄ•maĹľar M, Daly NL (2006) The cyclotides and related macrocyclic peptides as scaffolds in drug design. Curr Opin Drug Discov Devel 9:251–260

    PubMed  CAS  Google Scholar 

  • Craik DJ, Clark RJ, Daly NL (2007) Potential therapeutic applications of the cyclotides and related cystine knot mini-proteins. Expert Opin Investig Drugs 16:595–604

    Article  PubMed  CAS  Google Scholar 

  • Daly NL, Love S, Alewood PF et al (1999) Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1. Biochemistry 38:10606–10614

    Article  PubMed  CAS  Google Scholar 

  • Daly NL, Clark RJ, Craik DJ (2003) Disulfide folding pathways of cystine knot proteins. Tying the knot within the circular backbone of the cyclotides. J Biol Chem 278:6314–6322

    Article  PubMed  CAS  Google Scholar 

  • Dutton JL, Renda RF, Waine C et al (2004) Conserved structural and sequence elements implicated in the processing of gene-encoded circular proteins. J Biol Chem 279:46858–46867

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  PubMed  CAS  Google Scholar 

  • Felizmenio-Quimio ME, Daly NL, Craik DJ (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem 276:22875–22882

    Article  PubMed  CAS  Google Scholar 

  • Gillon AD, Saska I, Jennings CV et al (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  PubMed  CAS  Google Scholar 

  • Göransson U, Craik DJ (2003) Disulfide mapping of the cyclotide kalata B1. Chemical proof of the cystic cystine knot motif. J Biol Chem 278:48188–48196

    Article  PubMed  Google Scholar 

  • Göransson U, Luijendijk T, Johansson S et al (1999) Seven novel macrocyclic polypeptides from Viola arvensis. J Nat Prod 62:283–286

    Article  PubMed  Google Scholar 

  • Gran L (1970) An oxytocic principle found in Oldenlandia affinis DC. Medd Nor Farm Selsk 12:173–180

    Google Scholar 

  • Gran L (1973) On the effect of a polypeptide isolated from “Kalata–Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol Toxicol 33:400–408

    Article  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Heras B et al (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–464

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Anderson MA et al (2007a) Insecticidal plant cyclotides and related cystine knot toxins. Toxicon 49:561–575

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Clark RJ et al (2007b) A novel plant protein-disulfide isomerase involved in the oxidative folding of cystine knot defense proteins. J Biol Chem 282:20435–20446

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Elliott AG, Ireland DC et al (2008) Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20:2471–2483

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Mechler A et al (2009) Biochemical and biophysical characterization of a novel plant protein disulfide isomerase. Biopolymers 92:35–43

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera S, Foley FM, Clark RJ et al (2008) Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides. J Med Chem 51:7697–7704

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera S, Daly NL, Clark RJ et al (2009) Dissecting the oxidative folding of circular cystine knot miniproteins. Antioxid Redox Signal 11:971–980

    Article  PubMed  CAS  Google Scholar 

  • Gustafson KR, Sowder RCI, Henderson LE et al (1994) Circulins A and B: Novel HIV-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116:9337–9338

    Article  CAS  Google Scholar 

  • Heitz A, Hernandez JF, Gagnon J et al (2001) Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 40:7973–7983

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JF, Gagnon J, Chiche L et al (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  PubMed  CAS  Google Scholar 

  • Herrmann A, Svangard E, Claeson P et al (2006) Key role of glutamic acid for the cytotoxic activity of the cyclotide cycloviolacin O2. Cell Mol Life Sci 63:235–245

    Article  PubMed  CAS  Google Scholar 

  • Huang YH, Colgrave ML, Daly NL et al (2009) The biological activity of the prototypic cyclotide kalata B1 is modulated by the formation of multimeric pores. J Biol Chem 284:20699–20707

    Article  PubMed  CAS  Google Scholar 

  • Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 5:391–395

    Article  PubMed  CAS  Google Scholar 

  • Jennings C, West J, Waine C et al (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci USA 98:10614–10619

    Article  PubMed  CAS  Google Scholar 

  • Jennings CV, Rosengren KJ, Daly NL et al (2005) Isolation, solution structure, and insecticidal activity of kalata B2, a circular protein with a twist: do Mobius strips exist in nature? Biochemistry 44:851–860

    Article  PubMed  CAS  Google Scholar 

  • Kamimori H, Hall K, Craik DJ et al (2005) Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. Anal Biochem 337:149–153

    Article  PubMed  CAS  Google Scholar 

  • Kimura RH, Tran A-T, Camarero JA (2006) Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew Chem Int Ed Engl 118:987–990

    Google Scholar 

  • Koivunen P, Pirneskoski A, Karvonen P et al (1999) The acidic C-terminal domain of protein disulfide isomerase is not critical for the enzyme subunit function or for the chaperone or disulfide isomerase activities of the polypeptide. EMBO J 18:65–74

    Article  PubMed  CAS  Google Scholar 

  • Koradi R, Billeter M, WĂĽthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:29–32

    Article  Google Scholar 

  • Le-Nguyen D, Heitz A, Chiche L et al (1993) Characterization and 2D NMR study of the stable [9–21, 15–27] 2 disulfide intermediate in the folding of the 3 disulfide trypsin inhibitor EETI II. Protein Sci 2:165–174

    Article  PubMed  CAS  Google Scholar 

  • Leta Aboye T, Clark RJ, Craik DJ et al (2008) Ultra-stable peptide scaffolds for protein engineering-synthesis and folding of the circular cystine knotted cyclotide cycloviolacin O2. Chembiochem 9:103–113

    Article  PubMed  Google Scholar 

  • Lindholm P, Goransson U, Johansson S et al (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Ther 1:365–369

    Article  PubMed  CAS  Google Scholar 

  • Mulvenna JP, Wang C, Craik DJ (2006) CyBase: a database of cyclic protein sequence and structure. Nucleic Acids Res 34:D192–D194

    Article  PubMed  CAS  Google Scholar 

  • Plan MR, Saska I, Cagauan AG et al (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J Agric Food Chem 56:5237–5241

    Article  PubMed  CAS  Google Scholar 

  • Rosengren KJ, Daly NL, Plan MR et al (2003) Twists, knots, and rings in proteins. Structural definition of the cyclotide framework. J Biol Chem 278:8606–8616

    Article  PubMed  CAS  Google Scholar 

  • Saether O, Craik DJ, Campbell ID et al (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  PubMed  CAS  Google Scholar 

  • Saska I, Craik DJ (2008) Protease-catalysed protein splicing: a new post-translational modification? Trends Biochem Sci 33:363–368

    Article  PubMed  CAS  Google Scholar 

  • Saska I, Gillon AD, Hatsugai N et al (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclisation. J Biol Chem 282:29721–29728

    Article  PubMed  CAS  Google Scholar 

  • Schöpke T, Hasan Agha MI, Kraft R et al (1993) Hämolytisch aktive komponenten aus Viola tricolor L. und Viola arvensis Murray. Sci Pharm 61:145–153

    Google Scholar 

  • Shenkarev ZO, Nadezhdin KD, Lyukmanova EN et al (2008) Divalent cation coordination and mode of membrane interaction in cyclotides: NMR spatial structure of ternary complex Kalata B7/Mn2+/DPC micelle. J Inorg Biochem 102:1246–1256

    Article  PubMed  CAS  Google Scholar 

  • Simonsen SM, Sando L, Rosengren KJ et al (2008) Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J Biol Chem 283:9805–9813

    Article  PubMed  CAS  Google Scholar 

  • Sletten K, Gran L (1973) Some molecular properties of kalatapeptide B-1: a uterotonic polypeptide isolated from Oldenlandia affinis DC. Medd Nor Farm Selsk 7–8:69–82

    Google Scholar 

  • Solovyov A, Gilbert HF (2004) Zinc-dependent dimerization of the folding catalyst, protein disulfide isomerase. Protein Sci 13:1902–1907

    Article  PubMed  CAS  Google Scholar 

  • Svangard E, Burman R, Gunasekera S et al (2007) Mechanism of action of cytotoxic cyclotides: cycloviolacin O2 disrupts lipid membranes. J Nat Prod 70:643–647

    Article  PubMed  Google Scholar 

  • Tam JP, Lu Y-A (1997) Synthesis of large cyclic cystine-knot peptide by orthogonal coupling strategy using unprotected peptide precursors. Tetrahedron Lett 38:5599–5602

    Article  CAS  Google Scholar 

  • Tam JP, Lu Y-A, Yu Q (1999a) Thia zip reaction for synthesis of large cyclic peptides: mechanisms and applications. J Am Chem Soc 121:4316–4324

    Article  CAS  Google Scholar 

  • Tam JP, Lu YA, Yang JL et al (1999b) An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc Natl Acad Sci USA 96:8913–8918

    Article  PubMed  CAS  Google Scholar 

  • Thongyoo P, Roque-Rosell N, Leatherbarrow RJ et al (2008) Chemical and biomimetic total syntheses of natural and engineered MCoTI cyclotides. Org Biomol Chem 6:1462–1470

    Article  PubMed  CAS  Google Scholar 

  • Thongyoo P, Bonomelli C, Leatherbarrow RJ et al (2009) Potent inhibitors of beta-tryptase and human leukocyte elastase based on the MCoTI-II scaffold. J Med Chem 52:6197–6200

    Article  PubMed  CAS  Google Scholar 

  • Tian R, Li SJ, Wang DL et al (2004) The acidic C-terminal domain stabilizes the chaperone function of protein disulfide isomerase. J Biol Chem 279:48830–48835

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Xiang S, Noiva R et al (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73

    Article  PubMed  CAS  Google Scholar 

  • Trabi M, Craik DJ (2002) Circular proteins – no end in sight. Trends Biochem Sci 27:132–138

    Article  PubMed  CAS  Google Scholar 

  • Trabi M, Svangard E, Herrmann A et al (2004) Variations in cyclotide expression in Viola species. J Nat Prod 67:806–810

    Article  PubMed  CAS  Google Scholar 

  • Wang CK, Kaas Q, Chiche L et al (2008) CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res 36:D206–D210

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    PubMed  CAS  Google Scholar 

  • Witherup KM, Bogusky MJ, Anderson PS et al (1994) Cyclopsychotride A, A biologically active, 31-residue cyclic peptide isolated from Psychotria longipes. J Nat Prod 57:1619–1625

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in DC’s laboratory on cyclotides is supported by grants from the Australian Research Council (ARC) and the National Health and Medical Research Council (NHMRC). NLD is a Queensland Smart State Fellow and DJC is an NHMRC Principal Research Fellow. UG is supported by grants from the Swedish Research Council (VR) and the Swedish Foundation for Strategic Research (SSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Craik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Daly, N.L., Gruber, C.W., Göransson, U., Craik, D.J. (2011). Cystine Knot Folding in Cyclotides. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_3

Download citation

Publish with us

Policies and ethics