Skip to main content

A Half-Century of Oxidative Folding and Protein Disulphide Formation

  • Chapter
  • First Online:
Folding of Disulfide Proteins

Part of the book series: Protein Reviews ((PRON,volume 14))

  • 1095 Accesses

Abstract

The preceding chapters in this volume are a dramatic demonstration of the extent and sophistication of our current understanding of the complex process of protein oxidative folding – a process of much chemical, biotechnological and biomedical interest, which has now been extensively characterised both in vitro and in cellulo. Of course there are many aspects about which we are still ignorant and many questions to which we require answers. But by comparison with the state of knowledge previously – even 20 years ago – we must recognise that this is now a mature field with an established body of ­knowledge and some reliable techniques and experimental approaches. In this chapter, the half-century from 1961 to 2010 is divided into decades and the key developments within each decade are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya AS, Taniuchi H (1977) Formation of the four isomers of hen egg white lysozyme containing three native disulfide bonds and one open disulfide bond. Proc Natl Acad Sci USA 74:2362–2366

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB, Haber E (1961) Studies on reduction and reformation of protein disulfide bonds. J Biol Chem 236:1361–1363

    PubMed  CAS  Google Scholar 

  • Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced chain. Proc Natl Acad Sci USA 47:1309–1314

    Article  PubMed  CAS  Google Scholar 

  • Arolas JL, Aviles FX, Chang J-Y, Ventura S (2006) Folding of small disulfide-rich proteins: clarifying the puzzle. Trends Biochem Sci 31:292–301

    Article  PubMed  CAS  Google Scholar 

  • Bader MW, Xie T, Yu C-A, Bardwell JCA (2000) Disulfide bonds are generated by quinone reduction. J Biol Chem 275:26082–26088

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL (1978) The pathway of protein folding. Trends Biochem Sci 3:66–68

    Article  CAS  Google Scholar 

  • Bardwell JCA (1994) Building bridges: disulphide formation in the cell. Mol Microbiol 14:199–205

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, Beckwith J (1993) The bonds that tie: catalyzed disulfide bond formation. Cell 74:769–771

    Article  PubMed  CAS  Google Scholar 

  • Bardwell JCA, McGovern K, Beckwith J (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67:581–589

    Article  PubMed  CAS  Google Scholar 

  • Bello J, Harker D, de Jarnette E (1961) Note on an x-ray diffraction investigation of reduced-reoxidized ribonuclease. J Biol Chem 236:1358–1360

    Google Scholar 

  • Braakman I, Helenius J, Helenius A (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11:1717–1722

    PubMed  CAS  Google Scholar 

  • Bulleid NJ, Freedman RB (1988) Defective co-translational formation of disulphide bonds in protein disulphide isomerase-deficient microsomes. Nature 335:649–651

    Article  PubMed  CAS  Google Scholar 

  • Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275:4827–4833

    Article  PubMed  CAS  Google Scholar 

  • Chandler ML, Varandani PT (1975) Kinetic analysis of the mechanism of insulin degradation by glutathione-insulin transhydrogenase (thiol:protein-disulfide oxidoreductase). Biochemistry 14:2107–2115

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Canals F, Schindler P, Querol E, Aviles FX (1994) The disulfide folding pathway of potato carboxypeptidase inhibitor. J Biol Chem 269:22087–22094

    PubMed  CAS  Google Scholar 

  • Chivers PT, Prehoda KE, Raines RT (1997) The CXXC motif: a rheostat in the active site. Biochemistry 36:4061–4066

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1974a) Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol 87:579–602

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1974b) The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J Mol Biol 87:603–624

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1975) The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J Mol Biol 95:167–199

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE (1979) Experimental studies of protein folding and unfolding. Prog Biophys Mol Biol 33:231–297

    Article  Google Scholar 

  • Creighton TE (1980) A three-disulphide intermediate in refolding of reduced ribonuclease A with a folded conformation. FEBS Lett 118:283–288

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE, Hillson DA, Freedman RB (1980) Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol 142:43–62

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE, Bagley CJ, Cooper L, Darby NJ, Freedman RB, Kemmink J, Sheikh A (1993) On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI): structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J Mol Biol 232:1176–1196

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Creighton TE (1995) Functional properties of the thioredoxin-like domains of protein disulphide isomerase. Biochemistry 34:11725–11735

    Article  PubMed  CAS  Google Scholar 

  • Darby NJ, Penka E, Vincentelli R (1998) The multi-domain structure of protein disulfide isomerase is essential for high catalytic activity. J Mol Biol 276:239–247

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo F, Fuchs S, Anfinsen CB (1966) Characterization of a peptide fragment containing the essential half-cystine residue of a microsomal disulfide interchange enzyme. Biochemistry 5:3961–3965

    Article  Google Scholar 

  • Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrot C, Randal M, Kossiakoff AA (1990) Structural effects induced by removal of a disulfide-bridge: the X-ray structure of the C30A/C51A mutant of basic pancreatic trypsin inhibitor at 1.6  Å. Protein Eng 3:591–598

    Article  PubMed  CAS  Google Scholar 

  • Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerise family: substrate interactions and functional properties. EMBO Rep 6:28–32

    Article  PubMed  CAS  Google Scholar 

  • Elliott JG, Oliver JD, High S (1997) The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem 272:13849–13855

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ, Goldberger RF, Anfinsen CB (1963) The genetic control of tertiary protein structure: studies with model systems. Cold Spring Harb Symp Quant Biol 28:439–449

    CAS  Google Scholar 

  • Ewbank JJ, Creighton TE (1993) Structural characterization of the disulfide folding intermediates of bovine α-lactalbumin. Biochemistry 32:3694–3707

    Article  PubMed  CAS  Google Scholar 

  • Farquhar R, Honey N, Murant SJ, Bossier P, Schultz L, Montgomery D, Ellis RW, Freedman RB, Tuite MF (1991) Protein disulfide isomerise is essential for viability in Saccharomyces cerevisiae. Gene 108:81–89

    Article  PubMed  CAS  Google Scholar 

  • Ferrari DM, Soling H-D (1999) The protein disulphide-isomerase family: unravelling a string of folds. Biochem J 339:1–10

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  PubMed  CAS  Google Scholar 

  • Freedman MH, Sela M (1966) Recovery of specific activity upon reoxidation of completely reduced polyalanyl rabbit antibody. J Biol Chem 241:5225–5232

    PubMed  CAS  Google Scholar 

  • Freedman RB (1984) Native disulphide bond formation in protein biosynthesis: evidence for the role of protein disulphide isomerase. Trends Biochem Sci 9:438–441

    Article  CAS  Google Scholar 

  • Freedman RB, Hawkins HC (1977) Enzyme-catalysed disulphide interchange and protein biosynthesis. Biochem Soc Trans 5:348–357

    PubMed  CAS  Google Scholar 

  • Freedman RB, Hillson DA (1980) Formation of disulphide bonds. In: Freedman RB, Hawkins HC (eds) The enzymology of post-translational modification of proteins, vol 1. Academic, New York, pp 157–212

    Google Scholar 

  • Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  PubMed  CAS  Google Scholar 

  • Freedman RB, Klappa P, Ruddock LW (2002) Protein disulfide isomerases exploit synergy between catalytic and specific ligand-binding domains. EMBO Rep 3:146–150

    Article  Google Scholar 

  • Fuchs S, de Lorenzo F, Anfinsen CB (1967) Studies on the mechanism of the enzymic catalysis of disulfide interchange in proteins. J Biol Chem 242:398–402

    PubMed  CAS  Google Scholar 

  • Givol D, Goldberger RF, Anfinsen CB (1964) Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J Biol Chem 239:PC3114–PC3116

    PubMed  CAS  Google Scholar 

  • Givol D, de Lorenzo F, Goldberger RF, Anfinsen CB (1965) Disulfide interchange and the three-dimensional structure of proteins. Proc Natl Acad Sci USA 53:676–684

    Article  PubMed  CAS  Google Scholar 

  • Goldberger RF, Epstein CJ, Anfinsen CB (1963) Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628–635

    PubMed  CAS  Google Scholar 

  • Goldenberg DP (1992) Native and non-native intermediates in the BPTI folding pathway. Trends Biochem Sci 17:257–261

    Article  PubMed  CAS  Google Scholar 

  • Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–463

    Article  PubMed  CAS  Google Scholar 

  • Gunther R, Brauer C, Janetzky B, Forster H-H, Ehbrecht I-M, Lehle L, Kuntzel H (1991) The Saccharomyces cerevisiae TRG1 gene is essential for growth and encodes a lumenal endoplasmic reticulum glycoprotein involved in the maturation of vacuolar carboxypeptidase. J Biol Chem 266:24557–24563

    PubMed  CAS  Google Scholar 

  • Haber E (1964) Recovery of antigenic specificity after denaturation and complete reduction of disulfides in a papain fragment of antibody. Proc Natl Acad Sci USA 5:1099–1106

    Article  Google Scholar 

  • Hantgan RR, Hammes GG, Scheraga HA (1974) Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry 13:3421–3431

    Article  PubMed  CAS  Google Scholar 

  • Hillson DA, Freedman RB (1980) Resolution of protein disulphide-isomerase and glutathione-insulin transhydrogenase activities by covalent chromatography: properties of the purified protein disulphide-isomerase. Biochem J 191:373–388

    PubMed  CAS  Google Scholar 

  • Huber-Wunderlich M, Glockshuber R (1998) A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des 3:161–171

    Article  PubMed  CAS  Google Scholar 

  • Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502

    Article  PubMed  CAS  Google Scholar 

  • Isaacs J, Binkley F (1977) Glutathione-dependent control of protein disulfide-sulfhydryl content by sub-cellular fractions of hepatic tissue. Biochim Biophys Acta 498:29–38

    PubMed  CAS  Google Scholar 

  • Janolino VG, Sliwkowski MX, Swaisgood HE, Horton HR (1978) Catalytic effect of sulfhydryl oxidase on the formation of three-dimensional structure in chymotrypsinogen A. Arch Biochem Biophys 191:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kaderbhai MA, Austen BM (1984) Dog pancreatic microsomal membrane polypeptides analysed by two-dimensional gel electrophoresis. Biochem J 217:145–157

    PubMed  CAS  Google Scholar 

  • Karala AR, Lappi AK, Saaranen MJ, Ruddock LW (2009) Efficient peroxide-mediated oxidative folding of a protein at physiological pH and implications for oxidative folding in the endoplasmic reticulum. Antioxid Redox Signal 11:963–970

    Article  PubMed  CAS  Google Scholar 

  • Karala AR, Lappi AK, Ruddock LW (2010) Modulation of an active site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization. J Mol Biol 396:883–892

    Article  PubMed  CAS  Google Scholar 

  • Kato I, Anfinsen CB (1969) On the stabilization of ribonuclease S-protein by ribonuclease S-peptide. J Biol Chem 244:1004–1007

    PubMed  CAS  Google Scholar 

  • Kemmink J, Darby NJ, Dijkstra K, Nilges M, Creighton TE (1996) Structure determination of the N-terminal thioredoxin-like domain of protein disulphide isomerase using multi-dimensional 13C/15N NMR spectroscopy. Biochemistry 35:7684–7691

    Article  PubMed  CAS  Google Scholar 

  • Kemmink J, Darby NJ, Dijkstra K, Nilges M, Creighton TE (1997) The folding catalyst protein disulphide isomerase is constructed of active and inactive thioredoxin modules. Curr Biol 7:239–245

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Hawkins HC, Freedman RB (1997) Interactions between protein disulphide isomerase and peptides. Eur J Biochem 248:37–42

    Article  PubMed  CAS  Google Scholar 

  • Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b′ domain provides the principal peptide-binding site of protein disulphide isomerase but all domains contribute to binding of misfolded proteins. EMBO J 17:927–935

    Article  PubMed  CAS  Google Scholar 

  • Kohno T, Carmichael DF, Sommer A, Thompson RC (1990) Refolding of recombinant proteins. Methods Enzymol 185:187–195

    Article  PubMed  CAS  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA (1981) Regeneration of ribonuclease A from the reduced protein: isolation and identification of intermediates and equilibrium treatment. Biochemistry 20:3944–3955

    Article  Google Scholar 

  • Kosen PA, Creighton TE, Blout ER (1980) Ultraviolet difference spectroscopy of intermediates trapped in unfolding and refolding of bovine pancreatic trypsin inhibitor. Biochemistry 19:4936–4944

    Article  PubMed  CAS  Google Scholar 

  • Kozlov G, Maattanen P, Thomas DY, Gehring K (2010) A structural overview of the PDI family of proteins. FEBS J 277:3924–3936

    Article  PubMed  CAS  Google Scholar 

  • Laity JH, Lester CC, Shimotakahara S, Zimmerman DE, Montelione E, Scheraga HA (1997) Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 36:12683–12699

    Article  PubMed  CAS  Google Scholar 

  • LaMantia M-L, Miura T, Tachikawa H, Kaplan HA, Lennarz WJ, Mizunaga T (1991) Glycosylation site binding protein and protein disulfide isomerise are identical and essential for cell viability in yeast. Proc Natl Acad Sci USA 88:4453–4457

    Article  PubMed  CAS  Google Scholar 

  • Lambert N, Freedman RB (1985) The latency of rat liver microsomal protein disulphide-isomerase. Biochem J 228:635–645

    PubMed  CAS  Google Scholar 

  • Land A, Zonneveld D, Braakman I (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerisation of disulfide bonds and conformation-dependent leader peptide cleavage. FASEB J 17:1058–1067

    Article  PubMed  CAS  Google Scholar 

  • Lappi AK, Lensink MF, Alanen HI, Salo KEH, Lobell M, Juffer AH, Ruddock LW (2004) A conserved arginine plays a role in the catalytic cycle of the protein disulphide isomerases. J Mol Biol 335:283–295

    Article  PubMed  CAS  Google Scholar 

  • Marston FAO (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    PubMed  CAS  Google Scholar 

  • Marston FAO, Lowe PA, Doel MT, Schoemaker JM, White S, Angal S (1984) Purification of calf prochymosin (prorennin) synthesised in Escherichia coli. Bio/technology 2:800–804

    Article  CAS  Google Scholar 

  • Martin JL (1995) Thioredoxin – a fold for all reasons. Structure 3:245–250

    Article  PubMed  CAS  Google Scholar 

  • Martin JL, Bardwell JCA, Kuriyan J (1993) Crystal structure of the DsbA protein required for disulphide bond formation in vivo. Nature 365:464–468

    Article  PubMed  CAS  Google Scholar 

  • Mazzarella RA, Srinivasan M, Haugejorden SM, Green M (1990) ERp72, an abundant luminal endoplasmic reticulum protein, contains three copies of the active site sequences of protein disulfide isomerase. J Biol Chem 265:1094–1101

    PubMed  CAS  Google Scholar 

  • McLaughlin SH, Bulleid NJ (1998) Thiol-independent interaction of protein disulphide isomerase with type X collagen during intracellular folding and assembly. Biochem J 331:793–800

    PubMed  CAS  Google Scholar 

  • Mills EC, Lambert N, Freedman RB (1983) Identification of protein disulphide-isomerase as a major acidic polypeptide in rat liver microsomal membranes. Biochem J 213:245–248

    PubMed  CAS  Google Scholar 

  • Munro S, Pelham HRB (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    Article  PubMed  CAS  Google Scholar 

  • Narayan M, Welker E, Wedemeyer WJ, Scheraga HA (2000) Oxidative folding of proteins. Acc Chem Res 33:805–812

    Article  PubMed  CAS  Google Scholar 

  • Norgaard P, Westphal V, Tachibana C, Alsoe L, Holst B, Winther JR (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152:553–562

    Article  Google Scholar 

  • Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88

    Article  PubMed  CAS  Google Scholar 

  • Pihlajaniemi T, Helaakoski T, Tasanen K, Myllyla R, Huhtala M-L, Koivu J, Kivirikko KI (1987) Molecular cloning of the β-subunit of prolyl-4-hydroxylase: this subunit and protein disulphide isomerase are products of the same gene. EMBO J 6:643–649

    PubMed  CAS  Google Scholar 

  • Pollard MG, Travers KJ, Weissman JS (1998) Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–182

    Article  PubMed  CAS  Google Scholar 

  • Pollitt S, Zalkin H (1983) Role of primary structure and disulfide bond formation in β-lactamase secretion. J Bacteriol 153:27–32

    PubMed  CAS  Google Scholar 

  • Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: two solutions to a common process. Science 324:1284–1287

    Article  PubMed  CAS  Google Scholar 

  • Rietsch A, Beckwith J (1998) The genetics of disulfide bond metabolism. Annu Rev Genet 32:163–184

    Article  PubMed  CAS  Google Scholar 

  • Rietsch A, Belin D, Martin N, Beckwith J (1996) An in vivo pathway for disulfide bond isomerisation in Escherichia coli. Proc Natl Acad Sci USA 93:13048–13053

    Article  PubMed  CAS  Google Scholar 

  • Rose JK, Doms RW (1988) Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol 4:257–288

    Article  PubMed  CAS  Google Scholar 

  • Roth RA, Pierce SB (1987) In vivo cross-linking of protein disulfide isomerase to immunoglobulins. Biochemistry 26:4179–4182

    Article  PubMed  CAS  Google Scholar 

  • Saxena VP, Wetlaufer DB (1970) Formation of three-dimensional structure in proteins I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry 9:5015–5023

    Article  PubMed  CAS  Google Scholar 

  • Scheele G, Jacoby R (1982) Conformational changes associated with proteolytic processing of presecretory proteins allow glutathione-catalysed formation of native disulfide bonds. J Biol Chem 257:12277–12282

    PubMed  CAS  Google Scholar 

  • Scherens B, Dubois E, Messenguy F (1991) Determination of the sequence of the yeast YCL313 gene localized on chromosome III: homology with the protein disulfide isomerase (PDI) gene product of other organisms. Yeast 7:185–193

    Article  PubMed  CAS  Google Scholar 

  • Shin HC, Scheraga HA (2000) Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase. J Mol Biol 300:995–1003

    Article  PubMed  CAS  Google Scholar 

  • Steiner DF, Clark JL (1968) The spontaneous reoxidation of reduced beef and rat proinsulins. Proc Natl Acad Sci USA 60:622–629

    Article  PubMed  CAS  Google Scholar 

  • Tachibana C, Stevens TH (1992) The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol Cell Biol 12:4601–4611

    PubMed  CAS  Google Scholar 

  • Tachikawa H, Miura T, Katakura Y, Mizunaga T (1991) Molecular structure of a yeast gene PDI1 encoding protein disulfide isomerase that is essential for cell growth. J Biochem (Tokyo) 110:306–313

    CAS  Google Scholar 

  • Talluri S, Rothwarf DA, Scheraga HA (1994) Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 33:10437–10449

    Article  PubMed  CAS  Google Scholar 

  • Talmadge K, Gilbert W (1982) Cellular location affects protein stability in Escherichia coli. Proc Natl Acad Sci USA 79:1830–1833

    Article  PubMed  CAS  Google Scholar 

  • Tasanen K, Parkkonen T, Chow LT, Kivirikko KI, Pihlajaniemi T (1988) Characterization of the human gene for a polypeptide that acts both as the beta subunit of prolyl 4-hydroxylase and as protein disulfide isomerase. J Biol Chem 263:16218–16224

    PubMed  CAS  Google Scholar 

  • Tavender TJ, Springate JJ, Bulleid NJ (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J 29:4185–4197. doi:10.1038/emboj.2010.273

    Article  PubMed  CAS  Google Scholar 

  • Tu BP, Ho-Schleyer SC, Travers KJ, Weissman JS (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290:1571–1574

    Article  PubMed  CAS  Google Scholar 

  • van den Berg B, Chung EW, Robinson CV, Dobson CM (1999a) Characterisation of the dominant oxidative folding intermediate of hen lysozyme. J Mol Biol 290:781–796

    Article  PubMed  Google Scholar 

  • van den Berg B, Chung EW, Robinson CV, Mateo PL, Dobson CM (1999b) The oxidative refolding of hen lysozyme and its catalysis by protein disulfide isomerase. EMBO J 18:4794–4803

    Article  PubMed  Google Scholar 

  • van Mierlo CPM, Darby NJ, Creighton TE (1992) The partially folded conformation of the Cys30-Cys51 intermediate in the disulfide folding pathway of bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 89:6775–6779

    Article  PubMed  Google Scholar 

  • van Mierlo CPM, Darby NJ, Keeler J, Neuhaus D, Creighton TE (1993) Partially folded conformation of the (30–51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor: 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements. J Mol Biol 229:1125–1149

    Article  PubMed  Google Scholar 

  • van Mierlo CPM, Kemmink J, Neuhaus D, Darby NJ, Creighton TE (1994) 1H NMR analysis of the partly-folded non-native two-disulphide intermediates (30–51, 5–14) and (30–51, 5–38) in the folding pathway of bovine pancreatic trypsin inhibitor. J Mol Biol 235:1044–1061

    Article  PubMed  Google Scholar 

  • Venetianer P, Straub FB (1963) The enzymic reactivation of reduced ribonuclease. Biochim Biophys Acta 67:166–168

    Article  PubMed  CAS  Google Scholar 

  • Wang C-C, Tsou C-L (1993) Protein disulfide isomerase is both an enzyme and a chaperone. FASEB J 7:1515–1517

    PubMed  CAS  Google Scholar 

  • Wedemeyer WJ, Welker E, Narayan M, Scheraga HA (2000) Disulfide bonds and protein folding. Biochemistry 39:4207–4216

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253:1386–1393

    Article  PubMed  CAS  Google Scholar 

  • Weissman JS, Kim PS (1993) Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature 365:185–188

    Article  PubMed  CAS  Google Scholar 

  • Wetterau JR, Combs KA, Spinner SN, Joiner BJ (1990) Protein disulfide isomerase as a component of the microsomal triglyceride transfer protein complex. J Biol Chem 265:9800–9807

    PubMed  CAS  Google Scholar 

  • Wetzel R (1987) Harnessing disulfide bonds using protein engineering. Trends Biochem Sci 12:478–482

    Article  CAS  Google Scholar 

  • White FH Jr (1960) Regeneration of enzymatic activity by air-oxidation of reduced ribonuclease with observations on thiolation during reduction with thioglycolate. J Biol Chem 235:383–389

    PubMed  CAS  Google Scholar 

  • White FH Jr (1961) Regeneration of native secondary and tertiary structures by air oxidation of reduced ribonuclease. J Biol Chem 236:1353–1360

    PubMed  CAS  Google Scholar 

  • Whitney PL, Tanford C (1965) Recovery of specific activity after complete unfolding and reduction of an antibody fragment. Proc Natl Acad Sci USA 53:524–532

    Article  PubMed  CAS  Google Scholar 

  • Yutani K, Yutani A, Imanishi A, Isemura T (1968) The mechanism of refolding of the reduced random coil form of lysozyme. J Biochem (Tokyo) 64:449–455

    CAS  Google Scholar 

  • Zapun A, Creighton TE (1994) Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and α-lactalbumin. Biochemistry 33:5202–5211

    Article  PubMed  CAS  Google Scholar 

  • Zapun A, Missiakas D, Raina S, Creighton TE (1995) Structural and functional characterization of DsbC, a protein involved in disulfide bond formation in Escherichia coli. Biochemistry 34:5075–5089

    Article  PubMed  CAS  Google Scholar 

  • Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJM, Thomas DY (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273:6009–6012

    Article  PubMed  CAS  Google Scholar 

  • Ziegler DM, Poulsen LL (1977) Protein disulfide bond synthesis: a possible intracellular mechanism. Trends Biochem Sci 2:79–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Freedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Freedman, R.B. (2011). A Half-Century of Oxidative Folding and Protein Disulphide Formation. In: Chang, R., Ventura, S. (eds) Folding of Disulfide Proteins. Protein Reviews, vol 14. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7273-6_11

Download citation

Publish with us

Policies and ethics