Skip to main content

Early-Acting Hematopoietic Growth Factors: Biology and Clinical Experience

  • Chapter
  • First Online:
Hematopoietic Growth Factors in Oncology

Part of the book series: Cancer Treatment and Research ((CTAR,volume 157))

Abstract

Secreted protein growth factors that stimulate the self-renewal, proliferation, and differentiation of the most primitive stem cells are among the most biologically interesting molecules and at least theoretically have diverse applications in the evolving field of regenerative medicine. Among this class of regulators, the early-acting hematopoietic growth factors and their cellular targets are perhaps the best characterized and serve as a paradigm for manipulating other stem cell based tissues. This chapter reviews the preclinical knowledge accumulated over ∼40 years, since the discovery of the first such growth factor, and the clinical applications of those that, upon testing in humans, ultimately gained regulatory approval for the treatment of various hematological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szilvassy SJ. The biology of hematopoietic stem cells. Arch Med Res. 2003;34:446–60.

    Article  PubMed  CAS  Google Scholar 

  2. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357–459.

    Article  PubMed  CAS  Google Scholar 

  3. Chabot B, Stephenson DA, Chapman VM, et al. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature. 1988;335:88–9.

    Article  PubMed  CAS  Google Scholar 

  4. Geissler EN, Ryan MA, Houseman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell. 1988;55:185–92.

    Article  PubMed  CAS  Google Scholar 

  5. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the Wlocus. Cell. 1990;63:225–33.

    Article  PubMed  CAS  Google Scholar 

  6. Martin FH, Suggs SV, Langley KE, et al. Primary structure and functional expression of rat and human stem cell factor cDNAs. Cell. 1990;63:203–11.

    Article  PubMed  CAS  Google Scholar 

  7. Williams DE, Eisenman J, Baird A, et al. Identification of a ligand for the c-kit proto-oncogene. Cell. 1990;63:167–74.

    Article  PubMed  CAS  Google Scholar 

  8. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms. Cell. 1990;63:235–43.

    Article  PubMed  CAS  Google Scholar 

  9. Brannan CI, Lyman SD, Williams DE, et al. Steel–Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natal Acad Sci USA. 1991;88:4671–4.

    Article  CAS  Google Scholar 

  10. Toksoz D, Zsebo KM, Smith KA, et al. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natal Acad Sci USA. 1992;89:7350–4.

    Article  CAS  Google Scholar 

  11. Zsebo KM, Wypych J, McNiece IK, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver-conditioned medium. Cell. 1990;63:195–201.

    Article  PubMed  CAS  Google Scholar 

  12. Li CL, Johnson GR. Stem cell factor enhances the survival but not the self-renewal of murine hematopoietic long-term repopulating cells. Blood. 1994;84:408–14.

    PubMed  CAS  Google Scholar 

  13. Keller JR, Ortiz M, Ruscetti FW. Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division. Blood. 1995;86:1757–64.

    PubMed  CAS  Google Scholar 

  14. McNiece IK, Langley KE, Zsebo KM. Recombinant human stem cell factor synergizes with GM-CSF, G-CSF, IL-3 and Epo to stimulate human progenitor cells of the myeloid and the erythroid lineages. Blood. 1991;19:226–31.

    CAS  Google Scholar 

  15. Kobayashi M, Laver JH, Kato T, et al. Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with steel factor and/or interleukin-3. Blood. 1996;88:429–36.

    PubMed  CAS  Google Scholar 

  16. Bernstein ID, Andrews RG, Zsebo KM. Recombinant human stem cell factor enhances the formation of colonies by CD34+ and CD34+Lin cells, and the generation of colony-forming cell progeny from CD34+Lin cells cultured with interleukin-3, granulocyte colony-stimulating factor, or granulocyte–macrophage colony-stimulating factor. Exp Hematol. 1991;77:2316–21.

    CAS  Google Scholar 

  17. Zsebo KM, Williams DA, Geissler EN, et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990;63:213–24.

    Article  PubMed  CAS  Google Scholar 

  18. Molineux G, Migdalska A, Szmitkowski M, et al. The effects on hematopoiesis of recombinant stem cell factor (ligand for c-kit) administered in vivo to mice either alone or in combination with granulocyte colony-stimulating factor. Blood. 1991;78:961–6.

    PubMed  CAS  Google Scholar 

  19. Yan X-Q, Briddell R, Hartley C, et al. Mobilization of long-term hematopoietic reconstituting cells in mice by the combination of stem cell factor plus granulocyte colony-stimulating factor. Blood. 1994;84:795–9.

    PubMed  CAS  Google Scholar 

  20. de Revel T, Appelbaum FR, Storb R, et al. Effects of granulocyte colony-stimulating factor and stem cell factor, alone and in combination, on the mobilization of peripheral blood cells that engraft lethally irradiated dogs. Blood. 1994;83:3795–9.

    PubMed  Google Scholar 

  21. Andrews RG, Briddell RA, Knitter GH, et al. Rapid engraftment by peripheral blood progenitor cells mobilized by recombinant human stem cell factor and recombinant human granulocyte colony-stimulating factor in nonhuman primates. Blood. 1995;85:15–20.

    PubMed  CAS  Google Scholar 

  22. Nocka K, Buck J, Levi E, et al. Candidate ligand for the c-kit transmembrane kinase receptor: KL, a fibroblast derived growth factor stimulates mast cells and erythroid progenitors. EMBO J. 1990;9:3287–94.

    PubMed  CAS  Google Scholar 

  23. Lacerna L Jr, Sheridan WP, Basser R, et al. Stem cell factor. In: Ho AD, Haas R, Champlin RE, editors. Hematopoietic stem cell transplantation. New York, NY: Marcel Dekker Inc; 2000. pp. 31–46.

    Google Scholar 

  24. Shpall EJ, Wheeler CA, Turner SA, et al. A randomized phase 3 study of peripheral blood progenitor cell mobilization with stem cell factor and filgrastim in high-risk breast cancer patients. Blood. 1999;93:2491–501.

    PubMed  CAS  Google Scholar 

  25. Brandt J, Briddell RA, Srour EF, et al. Role of c-kit ligand in the expansion of human hematopoietic progenitor cells. Blood. 1992;79:634–41.

    PubMed  CAS  Google Scholar 

  26. Holyoake TL, Freshney MG, McNair L, et al. Ex vivo expansion with stem cell factor and interleukin-11 augments both short-term recovery post-transplant and the ability to serially transplant marrow. Blood. 1996;87:4589–95.

    PubMed  CAS  Google Scholar 

  27. Möhle R, Kanz L. Hematopoietic growth factors for hematopoietic stem cell mobilization and expansion. Semin Hematol. 2007;44:193–202.

    Article  PubMed  CAS  Google Scholar 

  28. McNiece IM, Jones R, Bearman SI, et al. Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophils recovery after high-dose chemotherapy in patients with breast cancer. Blood. 2000;96:3001–7.

    PubMed  CAS  Google Scholar 

  29. Prince HM, Simmons PJ, Whitty G, et al. Improved haematopoietic recovery following transplantation with ex vivo-expanded mobilized blood cells. Br J Haematol. 2004;126:536–45.

    Article  PubMed  Google Scholar 

  30. Brugger W, Heimfeld S, Berenson RJ, et al. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med. 1995;333:283–7.

    Article  PubMed  CAS  Google Scholar 

  31. Rosnet O, Marchetto S, deLapeyriere O, et al. Murine flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene. 1991;6:1641–50.

    PubMed  CAS  Google Scholar 

  32. Lyman SD, James L, Vanden Bos T, et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993;75:1157–67.

    Article  PubMed  CAS  Google Scholar 

  33. Hannum C, Culpepper J, Campbell D, et al. Ligand for flt3/flk2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994;368:643–8.

    Article  PubMed  CAS  Google Scholar 

  34. Lyman SD, James L, Johnson L, et al. Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood. 1994;83:2795–801.

    PubMed  CAS  Google Scholar 

  35. Christensen JL, Weissman IL. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA. 2001;98:14541–6.

    Article  PubMed  CAS  Google Scholar 

  36. Sitnicka E, Buza-Vidas N, Larsson S, et al. Human CD34+ hematopoietic stem cells capable of multilineage engrafting NOD/SCID mice express flt3: distinct flt3 and c-kit expression and response patterns on mouse and candidate human hematopoietic stem cells. Blood. 2003;102:881–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kikushige Y, Yoshimoto G, Miyamoto T, et al. Human flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol. 2008;180:7358–67.

    PubMed  CAS  Google Scholar 

  38. Rasko JEJ, Metcalf D, Rossner MT, et al. The flt3/flk-2 ligand: receptor distribution and action on murine haemopoietic cell survival and proliferation. Leukemia. 1995;9:2058–66.

    PubMed  CAS  Google Scholar 

  39. Jacobsen SEW, Okkenhaug C, Myklebust J, et al. The FLT3L potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic actions with interleukin (IL) 11, IL-12, and other hematopoietic growth factors. J Exp Med. 1995;181:1357–63.

    Article  PubMed  CAS  Google Scholar 

  40. Broxmeyer HE, Lu L, Cooper S, et al. Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp Hematol. 1995;23:1121–9.

    PubMed  CAS  Google Scholar 

  41. Brasel K, McKenna HJ, Morrissey PJ, et al. Hematologic effects of flt3 ligand in vivo in mice. Blood. 1996;88:2004–12.

    PubMed  CAS  Google Scholar 

  42. Molineux G, McCrea C, Yan XQ, et al. Flt-3 ligand synergizes with granulocyte colony-stimulating factor to increase neutrophils numbers and to mobilize peripheral blood stem cells with long-term repopulating potential. Blood. 1997;89:3998–4004.

    PubMed  CAS  Google Scholar 

  43. Lynch DH, Andreasen A, Maraskovsky E, et al. Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med. 1997;3:625–31.

    Article  PubMed  CAS  Google Scholar 

  44. Esche C, Subbotin VM, Maliszewski C, et al. FLT3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Res. 1998;58:380–3.

    PubMed  CAS  Google Scholar 

  45. Reber AJ, Ashour AE, Robinson SN, et al. Flt3 ligand bioactivity and pharmacology in neoplasia. Curr Drug Targets – Immune Endocr Metabol Disord. 2004;4:149–57.

    Article  PubMed  CAS  Google Scholar 

  46. Borges L, Miller RE, Jones J, et al. Synergistic action of fms-like tyrosine kinase 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol. 1999;163:1289–97.

    PubMed  CAS  Google Scholar 

  47. Fong L, Hou Y, Rivas A, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA. 2001;98:8809–14.

    Article  PubMed  CAS  Google Scholar 

  48. Cheever MA. Twelve immunotherapy drugs that could cure cancers. Immunol Rev. 2008;222:357–68.

    Article  PubMed  CAS  Google Scholar 

  49. Sitnicka E, Bryder D, Theilgaard-Mönch K, et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity. 2002;17:463–72.

    Article  PubMed  CAS  Google Scholar 

  50. Keleman E, Cserhati I, Tanos B. Demonstration of some properties of human thrombopoietin in thrombocythaemic sera. Acta Haematologica. 1958;20:350–5.

    Article  Google Scholar 

  51. Kato T, Ogami K, Shimada Y, et al. Purification and characterization of thrombopoietin. J Biochem. 1995;118:229–36.

    PubMed  CAS  Google Scholar 

  52. Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 1994;77:1117–24.

    Article  PubMed  CAS  Google Scholar 

  53. de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 1994;369:533–8.

    Article  PubMed  Google Scholar 

  54. Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369:565–8.

    Article  PubMed  CAS  Google Scholar 

  55. Kuter DJ, Beeler DL, Rosenberg RD. The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production. Proc Natl Acad Sci USA. 1994;91:11104–8.

    Article  PubMed  CAS  Google Scholar 

  56. Linden HM, Kaushansky K. The glycan domain of thrombopoietin enhances its secretion. Biochemistry. 2000;39:3044–51.

    Article  PubMed  CAS  Google Scholar 

  57. Alexander WS, Roberts AW, Nicola NA, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and effective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-mpl. Blood. 1996;87:2162–70.

    PubMed  CAS  Google Scholar 

  58. Carver-Moore K, Broxmeyer HE, Luoh S-M, et al. Low levels of erythroid and myeloid progenitors in thrombopoietin- and c-mpl-deficient mice. Blood. 1996;88:803–8.

    PubMed  CAS  Google Scholar 

  59. Kaushansky K, Lin N, Grossmann A, et al. Thrombopoietin expands erythroid, granulocyte–macrophage, and megakaryocytic progenitor cells in normal and myelosuppressed mice. Exp Hematol. 1996;24:265–9.

    PubMed  CAS  Google Scholar 

  60. Hokom MM, Lacey D, Kinstler OB, et al. Pegylated megakaryocyte growth and development factor abrogates the lethal thrombocytopenia associated with carboplatin and irradiation in mice. Blood. 1995;86:4486–92.

    PubMed  CAS  Google Scholar 

  61. Sitnicka E, Lin N, Priestley GV, et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood. 1996;87:4998–5005.

    PubMed  CAS  Google Scholar 

  62. Ku H, Yonemura Y, Kaushansky K, et al. Thrombopoietin, the ligand for the mpl receptor, synergizes with steel factor and other early acting cytokines in supporting proliferation of primitive hematopoietic progenitors in mice. Blood. 1996;87:4544–51.

    PubMed  CAS  Google Scholar 

  63. Borge OJ, Ramsfjell V, Veiby OP, et al. Thrombopoietin, but not erythropoietin promotes viability and inhibits apoptosis of multipotent murine hematopoietic progenitor cells in vitro. Blood. 1996;88:2859–70.

    PubMed  CAS  Google Scholar 

  64. Matsunaga T, Kato T, Miyazaki H, et al. Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of Flt3/Flk-2 ligand and interleukin-6. Blood. 1998;92:452–61.

    PubMed  CAS  Google Scholar 

  65. Solar GP, Kerr WG, Zeigler FC, et al. Role of c-mpl in early hematopoiesis. Blood. 1998;92:4–10.

    PubMed  CAS  Google Scholar 

  66. Kirito K, Fox N, Kaushansky K. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood. 2003;102:3172–8.

    Article  PubMed  CAS  Google Scholar 

  67. Kirito K, Fox N, Kaushansky K. Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells. Mol Cell Biol. 2004;24:6751–62.

    Article  PubMed  CAS  Google Scholar 

  68. Gerber HP, Malik AK, Solar GP, et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature. 2002;417:954–8.

    Article  PubMed  CAS  Google Scholar 

  69. Danet GH, Pan Y, Luongo JL, et al. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003;112:126–35.

    PubMed  CAS  Google Scholar 

  70. Kirito K, Fox N, Komatsu N, et al. Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1a. Blood. 2005;105:4258–63.

    Article  PubMed  CAS  Google Scholar 

  71. Metcalf D. The unsolved enigmas of leukemia inhibitory factor. Stem Cells. 2003;21:5–14.

    Article  PubMed  CAS  Google Scholar 

  72. Escary J-L, Perreau J, Duménil D, et al. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature. 1993;363:361–4.

    Article  PubMed  CAS  Google Scholar 

  73. McKinstry WJ, Li C-L, Rasko JEJ, et al. Cytokine receptor expression on hematopoietic stem and progenitor cells. Blood. 1997;89:65–71.

    PubMed  CAS  Google Scholar 

  74. Gough NM, Gearing DP, King JA, et al. Molecular cloning and expression of the human homologue of the murine gene encoding myeloid leukemia-inhibitory factor. Proc Natal Acad Sci USA. 1988;85:2623–7.

    Article  CAS  Google Scholar 

  75. Chodorowska G, Glowacka A, Tomczyk M. Leukemia inhibitory factor (LIF) and its biological activity. Ann Univ Mariae Curie Sklodowska Med. 2004;59:189–93.

    PubMed  Google Scholar 

  76. Rathjen PD, Toth S, Willis A, et al. Differentiation inhibiting activity is produced in matrix-associated and diffusible forms that are generated by alternate promoter usage. Cell. 1990;62:1105–14.

    Article  PubMed  CAS  Google Scholar 

  77. Metcalf D, Hilton D, Nicola NA. Leukemia inhibitory factor can potentiate murine megakaryocyte production in vitro. Blood. 1991;77:2150–3.

    PubMed  CAS  Google Scholar 

  78. Keller JR, Gooya JM, Ruscetti FW. Direct synergistic effects of leukemia inhibitory factor on hematopoietic progenitor cell growth: comparison with other hematopoietins that use the gp130 receptor subunit. Blood. 1996;88:863–9.

    PubMed  CAS  Google Scholar 

  79. Szilvassy SJ, Weller KP, Lin W, et al. Leukemia inhibitory factor upregulates cytokine expression by a murine stromal cell line enabling the maintenance of highly enriched competitive repopulating stem cells. Blood. 1996;87:4618–28.

    PubMed  CAS  Google Scholar 

  80. Metcalf D, Gearing DP. Fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor. Proc Natl Acad Sci USA. 1989;86:5948–52.

    Article  PubMed  CAS  Google Scholar 

  81. Metcalf D, Gearing DP. A myelosclerotic syndrome in mice engrafted with cells producing high levels of leukemia inhibitory factor (LIF). Leukemia. 1989;3:847–52.

    PubMed  CAS  Google Scholar 

  82. Metcalf D, Nicola NA, Gearing DP. Effects of injected leukemia inhibitory factor on hematopoietic and other tissues in mice. Blood. 1990;76:50–6.

    PubMed  CAS  Google Scholar 

  83. Akiyama Y, Kikuchi Y, Matsuzaki J, et al. Protective effect of recombinant human leukemia inhibitory factor against thrombocytopenia in carboplatin-treated mice. Jpn J Cancer Res. 1997;88:584–9.

    PubMed  CAS  Google Scholar 

  84. Pruijt JFM, Lindley IJD, Heemskerk DPM, et al. Leukemia inhibitory factor induces in vivo expansion of bone marrow progenitor cells that accelerate hematopoietic reconstitution but do not enhance radioprotection in lethally irradiated mice. Stem Cells. 1997;15:50–55.

    Article  PubMed  CAS  Google Scholar 

  85. Mayer P, Geissler K, Ward M, et al. Recombinant human leukemia inhibitory factor induces acute phase proteins and raises the blood platelet counts in nonhuman primates. Blood. 1993;81:3226–33.

    PubMed  CAS  Google Scholar 

  86. Gunawardana DH, Basser RL, Davis ID, et al. A phase I study of recombinant human leukemia inhibitory factor in patients with advanced cancer. Clin Cancer Res. 2003;9:2056–65.

    PubMed  Google Scholar 

  87. Fung MC, Hapel AJ, Ymer S, et al. Molecular cloning of cDNA for murine interleukin-3. Nature. 1984;307:233–7.

    Article  PubMed  CAS  Google Scholar 

  88. Yang YC, Ciarletta AB, Temple PA, et al. Human interleukin 3 multi-colony-stimulating factor identification by expression cloning of a novel hematopoietic growth factor related to murine interleukin 3. Cell. 1986;47:3–10.

    Article  PubMed  CAS  Google Scholar 

  89. Mach N, Lantz CS, Galli SJ, et al. Involvement of interleukin-3 in delayed-type hypersensitivity. Blood. 1998;91:778–83.

    PubMed  CAS  Google Scholar 

  90. Ivanovic Z. Interleukin-3 and ex vivo maintenance of hematopoietic stem cells: facts and controversies. Eur Cytokine Netw. 2004;15:6–13.

    PubMed  CAS  Google Scholar 

  91. Bryder D, Jacobsen SEW. Interleukin-3 supports expansion of long-term multilineage repopulating activity after multiple stem cell divisions in vitro. Blood. 2000;96:1748–55.

    PubMed  CAS  Google Scholar 

  92. Nitsche A, Junghahn I, Thulke S, et al. Interleukin-3 promotes proliferation and differentiation of human hematopoietic stem cells but reduces their repopulation potential in NOD/SCID mice. Stem Cells. 2003;21:236–44.

    Article  PubMed  CAS  Google Scholar 

  93. Kindler V, Thorens B, Vassalli P. In vivo effect of murine recombinant interleukin 3 on early hematopoietic progenitors. Eur J Immunol. 1987;17:1511–14.

    Article  PubMed  CAS  Google Scholar 

  94. Mangi MH, Newland AC. Interleukin-3 in hematology and oncology: current state of knowledge and future directions. Cytokines Cell Mol Ther. 1999;5:87–95.

    PubMed  CAS  Google Scholar 

  95. Ahmed N, Khokher MA, Hassan HT. Synthetic cytokines containing interleukin-3 exert potent megakaryocytic activity. Haematologica. 2000;30:167–76.

    Article  CAS  Google Scholar 

  96. Vadhan-Raj S. PIXY321 (GM-CSF/IL-3 fusion protein): biology and early clinical development. Stem Cells. 1994;12:253–61.

    Article  PubMed  CAS  Google Scholar 

  97. Nabholtz J-M, Cantin J, Chang J, et al. Phase III trial comparing granulocyte colony-stimulating factor to leridistim in breast cancer patients treated with docetaxel/doxorubicin/cyclophosphamide: results of the BCIRG 004 trial. Clin Breast Cancer. 2002;3:268–75.

    Article  PubMed  CAS  Google Scholar 

  98. Farese AM, Smith WG, Giri JG, et al. Promegapoietin-1a, an engineered chimeric IL-3 and mpl-L receptor agonist, stimulates hematopoietic recovery in conventional and abbreviated schedules following radiation-induced myelosuppression in nonhuman primates. Stem Cells. 2001;19:329–38.

    Article  PubMed  CAS  Google Scholar 

  99. Difalco MR, Dufresne L, Congote LF. Efficacy of an insulin-like growth factor-interleukin-3 fusion protein in reversing the hematopoietic toxicity associated with azidothymidine in mice. J Pharmacol Exp Ther. 1998;284:449–54.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Szilvassy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Szilvassy, S.J. (2010). Early-Acting Hematopoietic Growth Factors: Biology and Clinical Experience. In: Lyman, G., Dale, D. (eds) Hematopoietic Growth Factors in Oncology. Cancer Treatment and Research, vol 157. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7073-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7073-2_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7072-5

  • Online ISBN: 978-1-4419-7073-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics