Skip to main content

Molecular Chaperones in the Mammalian Brain: Regional Distribution, Cellular Compartmentalization and Synaptic Interactions

  • Chapter
  • First Online:
Folding for the Synapse

Abstract

The expression of molecular chaperones in the human central nervous system (CNS) is not well explored although they regulate key aspects of neuronal functions and likely play crucial roles during chronic neurodegeneration associated with protein misfolding. Current data suggest a rather complex expression profile with a distinct distribution to brain regions and cell types that are further modulated under stress. Synapses represent a particular folding environment due to the many and highly regulated protein interactions that occur in relative isolation. Despite the synaptic localization of several chaperones and proteins with identifiable chaperone modality, we argue that additional synaptic chaperones and chaperone pathways exist that may regulate the synaptic protein homeostasis during protein folding and re-folding. Given the early synapse dysfunction and alterations of chaperone function that occur during CNS diseases associated with protein misfolding, we suggest that further efforts should be made to better define and understand the synaptic “chaperome”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bender T, Leidhold C, Ruppert T, Franken S, Voos W (2010) The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics 10(7):1426–43.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold DA, Brown IR (2000) Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain Res Mol Brain Res. 75(2):309–20.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold DA, Rush SJ, Brown IR (2000) Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. J Neurochem. 74(2):641–6.

    Article  PubMed  CAS  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci. 1113:147–58.

    Article  PubMed  CAS  Google Scholar 

  • Buck TM, Kolb AR, Boyd CR, Kleyman TR, Brodsky JL (2010) The endoplasmic reticulum-associated degradation of the epithelial sodium channel requires a unique complement of molecular chaperones. Mol Biol Cell. 21(6):1047–58.

    Article  PubMed  CAS  Google Scholar 

  • Chang WH, Cemal CK, Hsu YH, Kuo CL, Nukina N, Chang MH, Hu HT, Li C, Hsieh M (2005) Dynamic expression of Hsp27 in the presence of mutant ataxin-3. Biochem Biophys Res Commun. 336:258–67

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Brown IR (2007a) Translocation of constitutively expressed heat shock protein Hsc70 to synapse-enriched areas of the cerebral cortex after hyperthermic stress. J Neurosci Res. 85(2):402–9.

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Brown IR (2007b) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12(1):51–8.

    Article  PubMed  CAS  Google Scholar 

  • Clayton A, Turkes A, Navabi H, Mason MD, Tabi Z (2005) Induction of heat shock proteins in B-cell exosomes. J Cell Sci. 118:3631–8.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Isaac JT (2003) Functional roles of protein interactions with AMPA and kainate receptors. Neurosci Res. 47:3–15.

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Huang P, Aron R, Andrew A (2006) The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev Physiol Biochem Pharmacol. 156:1–21.

    Article  PubMed  CAS  Google Scholar 

  • D’Souza SM, Brown IR (1998) Constitutive expression of heat shock proteins Hsp90, Hsc70, Hsp70 and Hsp60 in neural and non-neural tissues of the rat during postnatal development. Cell Stress Chaperones 3(3):188–99.

    Article  PubMed  Google Scholar 

  • Der Perng M, Quinlan R (2004) Neuronal diseases: small heat shock proteins calm your nerves. Curr Biol. 14:R625–6.

    Article  PubMed  Google Scholar 

  • Di Domenico F, Sultana R, Tiu GF, Scheff NN, Perluigi M, Cini C, Butterfield AD (2010) Protein levels of heat shock proteins 27, 32, 60, 70, 90 and thioredoxin-1 in amnestic mild cognitive impairment: an investigation on the role of cellular stress response in the progression of Alzheimer disease. Brain Res. 1333:72–81.

    Article  PubMed  CAS  Google Scholar 

  • Dittman J, Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol. 25:133–60.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg E, Greene LE (2007) Multiple roles of auxilin and hsc70 in clathrin-mediated endocytosis. Traffic 8:640–6.

    Article  PubMed  CAS  Google Scholar 

  • Foster JA, Brown IR (1996) Intracellular localization of heat shock mRNAs (hsc70 and hsp70) to neural cell bodies and processes in the control and hyperthermic rabbit brain. J Neurosci Res. 46(6):652–65.

    Article  PubMed  CAS  Google Scholar 

  • Fujita M, Wei J, Nakai M, Masliah E, Hashimoto M (2006) Chaperone and anti-chaperone: two-faced synuclein as stimulator of synaptic evolution. Neuropathology 26:383–92.

    Article  PubMed  Google Scholar 

  • Gerges NZ, Tran IC, Backos DS, Harrell JM, Chinkers M, Pratt WB, Esteban JA (2004) Independent functions of hsp90 in neurotransmitter release and in the continuous synaptic cycling of AMPA receptors. J Neurosci. 24:4758–66.

    Article  PubMed  CAS  Google Scholar 

  • Granata A, Watson R, Collinson LM, Schiavo G, Warner TT (2008) The dystonia-associated protein torsinA modulates synaptic vesicle recycling. J Biol Chem. 283:7568–79.

    Article  PubMed  CAS  Google Scholar 

  • Guo ZH, Mattson MP (2000) In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: evidence for a stress response. Exp Neurol. 166(1):173–9.

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol. 16(6):574–81.

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M (2002) sHsps and their role in the chaperone network. Cell Mol Life Sci. 59:1649–57.

    Article  PubMed  CAS  Google Scholar 

  • Hay DG, Sathasivam K, Tobaben S, Stahl B, Marber M, Mestril R, Mahal A, Smith DL, Woodman B, Bates GP (2004) Progressive decrease in chaperone protein levels in a mouse model of Huntington’s disease and induction of stress proteins as a therapeutic approach. Hum Mol Genet 13:1389.

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT (1989) Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J Cell Physiol. 138:257–66.

    Article  PubMed  CAS  Google Scholar 

  • Houenou LJ, Li L, Lei M, Kent CR, Tytell M (1996) Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons. Cell Stress Chaperones 1(3):161–6.

    Article  PubMed  CAS  Google Scholar 

  • Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE (1992) Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol. 140:345–56.

    PubMed  CAS  Google Scholar 

  • Kabani M, Martineau CN (2008) Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr Genomics. 9(5):338–48.

    Article  PubMed  CAS  Google Scholar 

  • Kelty JD, Noseworthy PA, Feder ME, Robertson RM, Ramirez JM (2002) Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. J Neurosci. 22(1):RC193.

    PubMed  Google Scholar 

  • Kirkegaard T, Roth AG, Petersen NH, Mahalka AK, Olsen OD, Moilanen I, Zylicz A, Knudsen J, Sandhoff K, Arenz C, Kinnunen PK, Nylandsted J, Jäättelä M (2010) Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature 463(7280):549–53.

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Andres AC, Frohli E, Schafer R, Aoyama A (1993) Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J Cell Biol. 120:639–45.

    Article  PubMed  CAS  Google Scholar 

  • Koren J III, Jinwal UK, Lee DC, Jones JR, Shults CL, Johnson AG, Anderson LJ, Dickey CA (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med. 13(4):619–30.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster GI, Febbraio MA (2005) Mechanisms of stress-induced cellular HSP72 release: implications for exercise-induced increases in extracellular HSP72. Exerc Immunol Rev. 11:46–52.

    PubMed  Google Scholar 

  • Lein ES et al. (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76.

    Article  PubMed  CAS  Google Scholar 

  • Luo GR, Le WD (2010) Collective roles of molecular chaperones in protein degradation pathways associated with neurodegenerative diseases. Curr Pharm Biotechnol. 11:180–7.

    Article  PubMed  CAS  Google Scholar 

  • Mambula SS, Calderwood SK (2006) Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol. 177:7849–57.

    PubMed  CAS  Google Scholar 

  • Martin J (1997) Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr. 29(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62:670–84.

    Article  PubMed  CAS  Google Scholar 

  • Manzerra P, Brown IR (1996) The neuronal stress response: nuclear translocation of heat shock proteins as an indicator of hyperthermic stress. Exp Cell Res. 229(1):35–47.

    Article  PubMed  CAS  Google Scholar 

  • McEwen JM, Kaplan JM (2008) UNC-18 promotes both the anterograde trafficking and synaptic function of syntaxin. Mol Biol Cell. 19:3836–46.

    Article  PubMed  CAS  Google Scholar 

  • Morgan A, Burgoyne RD (1995) Is NSF a fusion protein? Trends Cell Biol. 5:335–9.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22.

    Article  PubMed  CAS  Google Scholar 

  • O’Connor V, Augustine GJ, Betz H (1994) Synaptic vesicle exocytosis: molecules and models. Cell 76:785–7.

    Article  PubMed  Google Scholar 

  • Outeiro TF, Klucken J, Strathearn KE, Liu F, Nguyen P, Rochet J-C, Hyman BT, McLean PJ (2006) Small heat shock proteins protect against [alpha]-synuclein-induced toxicity and aggregation. Biochem Biophys Res Commun 351:631–8.

    Article  PubMed  CAS  Google Scholar 

  • Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for alphaB-crystallin in autoimmune demyelination. Nature 448:474–9.

    Article  PubMed  CAS  Google Scholar 

  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–91.

    Article  PubMed  CAS  Google Scholar 

  • Püschel AW, O’Connor V, Betz H (1994) The N-ethylmaleimide-sensitive fusion protein (NSF) is preferentially expressed in the nervous system. FEBS Lett. 347:55–8.

    Article  PubMed  Google Scholar 

  • Puthenveedu MA, Yudowski GA, von Zastrow M (2007) Endocytosis of neurotransmitter receptors: location matters. Cell 130:988–9.

    Article  PubMed  CAS  Google Scholar 

  • Quraishe S, Asuni A, Boelens WC, O’Connor V, Wyttenbach A (2008) Expression of the small heat shock protein family in the mouse CNS: differential anatomical and biochemical compartmentalization. Neuroscience 153(2):483–91.

    Article  PubMed  CAS  Google Scholar 

  • Quraishi H, Brown IR (1995) Expression of heat shock protein 90 (hsp90) in neural and nonneural tissues of the control and hyperthermic rabbit. Exp Cell Res. 219(2):358–63.

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, De Jong WW, Merck KB, Frenken CW, Van Workum FP, Bosman GJ (1992) alpha B-crystallin is present in reactive glia in Creutzfeldt-Jakob disease. Acta Neuropathol. 83:324–7.

    Article  PubMed  CAS  Google Scholar 

  • Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10:2273–6.

    Article  PubMed  CAS  Google Scholar 

  • Ryan TJ, Grant SG (2009) The origin and evolution of synapses. Nat Rev Neurosci. 10:701–12.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355:409–15.

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Warren G (1994) Implications of the SNARE hypothesis for intracellular membrane topology and dynamics. Curr Biol. 4:220–33.

    Article  PubMed  CAS  Google Scholar 

  • Sajjad MU, Samson B, Wyttenbach A (2010) Heat shock proteins: therapeutic drug targets for chronic neurodegeneration? Curr Pharm Biotechnol. 11(2):198–215.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz L, Vollmer G, Richter-Landsberg C (2010) The small heat shock protein HSP25/27 (HspB1) is abundant in cultured astrocytes and associated with astrocytic pathology in progressive supranuclear palsy and corticobasal degeneration. Int J Cell Biol 2010:717520.

    PubMed  Google Scholar 

  • Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci. 119:203–8.

    Article  PubMed  CAS  Google Scholar 

  • Slepnev VI, De Camilli P (2000) Accessory factors in clathrin-dependent synaptic vesicle endocytosis. Nat Rev Neurosci. 1:161–72.

    Article  PubMed  CAS  Google Scholar 

  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE (1993) A protein assembly-­disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75:409–18.

    Article  PubMed  Google Scholar 

  • Stevens FJ, Argon Y (1999) Protein folding in the ER. Semin Cell Dev Biol. 10(5):443–54.

    Article  PubMed  CAS  Google Scholar 

  • Südhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci. 27 509–47.

    Article  PubMed  Google Scholar 

  • Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–7.

    Article  PubMed  Google Scholar 

  • Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–53.

    Article  PubMed  CAS  Google Scholar 

  • Stein A, Weber G, Wahl MC, Jahn R (2009) Helical extension of the neuronal SNARE complex into the membrane. Nature 460.525–8.

    PubMed  CAS  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–46.

    Article  PubMed  CAS  Google Scholar 

  • Terada S, Kinjo M, Aihara M, Takei Y, Hirokawa N (2010) Kinesin-1/Hsc70-dependent mechanism of slow axonal transport and its relation to fast axonal transport. EMBO J. 29(4):843–54.

    Article  PubMed  CAS  Google Scholar 

  • Tytell M (2005) Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. Int J Hyperthermia. 21(5):445–55.

    Article  PubMed  CAS  Google Scholar 

  • van Noort JM (2008) Stress proteins in CNS inflammation. J Pathol. 214:267–75.

    Article  PubMed  CAS  Google Scholar 

  • Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, Multhoff G, Arispe N, De Maio A (2008) Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol. 180(6):4299–307.

    PubMed  CAS  Google Scholar 

  • Voos W, Röttgers K (2002) Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim Biophys Acta. 1592(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  • Whiteheart SW, Matveeva EA (2004) Multiple binding proteins suggest diverse functions for the N-ethylmaleimide sensitive factor. J Struct Biol. 146:32–43.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmus MM, Otte-Höller I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006a) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol. 32:119–30.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelmus MM, Boelens WC, Otte-Holler I, Kamps B, de Waal RM, Verbeek MM (2006b) Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Res. 1089:67.

    Article  PubMed  CAS  Google Scholar 

  • Winter U, Chen X, Fasshauer D (2009) A conserved membrane attachment site in alpha-SNAP facilitates N-ethylmaleimide-sensitive factor (NSF)-driven SNARE complex disassembly. J Biol Chem. 284:31817–26.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik SM, Brose N (2007) Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron 55:11–24.

    Article  PubMed  CAS  Google Scholar 

  • Witt SN (2010) Hsp70 molecular chaperones and Parkinson’s disease. Biopolymers 93(3):218–28.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137–51.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A (2004) Role of heat shock proteins during polyglutamine neurodegeneration: mechanisms and hypothesis. J Mol Neurosci. 23:69–96.

    Article  PubMed  CAS  Google Scholar 

  • Wyttenbach A, Arrigo AP (2006) Role of heat shock proteins during neurodegeneration in Alzheimer’s, Parkinson’s and Huntington’s disease. In: Heat Shock Proteins in Neural Cells. Edited by: C. Richter-Landsberg. Eurekah.com.

    Google Scholar 

  • Wyttenbach A, Hands S, O’Connor V (2010) Small stress proteins in the central nervous system: from neurodegeneration to neuroprotection. In: Small stress proteins and human diseases. Edited by: AP Arrigo & S Simon. Nova Sciences, Hauppauge.

    Google Scholar 

  • Xing Y, Böcking T, Wolf M, Grigorieff N, Kirchhausen T, Harrison SC (2010) Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. EMBO J. 29:655–65.

    Article  PubMed  CAS  Google Scholar 

  • Yoo BC, Kim SH, Cairns N, Fountoulakis M, Lubec G (2001) Deranged expression of molecular chaperones in brains of patients with Alzheimer’s disease. Biochem Biophys Res Commun. 280(1):249–58.

    Article  PubMed  CAS  Google Scholar 

  • Zhai RG, Zhang F, Hiesinger PR, Cao Y, Haueter CM, Bellen HJ (2008) NAD synthase NMNAT acts as a chaperone to protect against neurodegeneration. Nature 452:887–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas Wyttenbach or Vincent O’Connor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wyttenbach, A., Quraishe, S., Bailey, J., O’Connor, V. (2011). Molecular Chaperones in the Mammalian Brain: Regional Distribution, Cellular Compartmentalization and Synaptic Interactions. In: Wyttenbach, A., O'Connor, V. (eds) Folding for the Synapse. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7061-9_7

Download citation

Publish with us

Policies and ethics