Skip to main content

Means and Variances

  • Chapter
  • First Online:
Quantitative Genetics in Maize Breeding

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 6))

Abstract

Choice of germplasm as source of elite inbred lines is the most important decision the breeder takes. No tool or breeding methodology will be successful if a poor choice is made on source populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, V. L., and O. Kempthorne. 1954. A model for the study of quantitative inheritance. Genetics 39:883–98.

    PubMed  CAS  Google Scholar 

  • Bernardo, R. 2002. Breeding for Quantitative Traits in Plants. Stemma Press, Woodbury, MN.

    Google Scholar 

  • Cockerham, C. C. 1954. An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present. Genetics 39:859–82.

    PubMed  CAS  Google Scholar 

  • Cockerham, C. C. 1963. Estimation of genetic variances. In Statistical Genetics and Plant Breeding, Vol. 982, W. D. Hanson and H. F. Robinson, (eds.), pp. 53–94. NAS-NRC. Washington, DC.

    Google Scholar 

  • Compton, W. A., C. O. Gardner, and J. H. Lonnquist. 1965. Genetic variability in two open-pollinated varieties of corn (Zea mays L.) and their F1 progenies. Crop Sci. 5:505–8.

    Google Scholar 

  • Falconer, D. S. 1960. Introduction to Quantitative Genetics. The Ronald Press, New York, NY.

    Google Scholar 

  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to Quantitative Genetics, 4th edn. Longman Group, Essex.

    Google Scholar 

  • Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. R. Soc. Edinb. 52:399–433.

    Article  Google Scholar 

  • Gamble, E. E. 1962a. Gene effects in corn (Zea mays L.). I. Selection and relative importance of gene effects for yield. Can. J. Plant Sci. 42:339–48.

    Article  Google Scholar 

  • Gamble, E. E. 1962b. Gene effects in corn (Zea mays L.). II. Relative importance of gene effects for plant height and certain component attributes of yield. Can. J. Plant Sci. 42:349—58.

    Article  Google Scholar 

  • Gardner, C. O., and S. A. Eberhart. 1966. Analysis and interpretation of the variety cross diallel and related populations. Biometrics 22:439–52.

    Article  PubMed  CAS  Google Scholar 

  • Geldermann, H. 1975. Investigations on inheritance in quantitative characters in animals by gene markers. I. Methods. Theor. Appl. Genet. 46:319–330.

    Article  Google Scholar 

  • Hayman, B. I. 1958. The separation of epistatic from additive and dominance variation in generation means. Heredity 12:371–90.

    Article  Google Scholar 

  • Hayman, B. I. 1960. The separation of epistatic from additive and dominance variation in generation means. II. Genetica 31:133–46.

    Article  CAS  Google Scholar 

  • Kempthorne, O. 1954. The correlations between relatives in a random mating population. Phil. R. Soc. Lond. B 143:103–13.

    Google Scholar 

  • Kempthorne, O. 1957. An Introduction to Genetic Statistics. Wiley, New York, NY.

    Google Scholar 

  • Lonnquist, J. H. 1963. Gene action and corn yields. Annu. Corn Sorghum Res. Conf. Proc. 18:37–44.

    Google Scholar 

  • Lush, J. L. 1945. Animal Breeding Plans. Iowa State University, Press, Ames, IA.

    Google Scholar 

  • Mather, K. 1941. Variation and selection of polygenic characters. J. Genetics 41:159–193.

    Article  Google Scholar 

  • Mather, K. 1949. Biometrical Genetics. Methuen, London.

    Google Scholar 

  • Robinson, H. F., and C. C. Cockerham. 1961. Heterosis and inbreeding depression in populations involving two open-pollinated varieties of maize. Crop Sci. 1:68–71.

    Google Scholar 

  • Snape, J., J. Simmonds, M. Leverington, L. Fish, E. Sayers, L. Alibert, S. Orford, M. Ciavarrella, and S. Griffiths. 2008. The yield dynamics of European winter wheat improvement revealed by large scale QTL analysis. In Breeding 08: Conventional and Molecular Breeding of Field and Vegetable Crops, p. 29. Novi Sad, Serbia.

    Google Scholar 

  • Sorrells, M. E. 2008. Association breeding strategies for improvement of self-pollinated crops. In Breeding 08: Conventional and Molecular Breeding of Field and Vegetable Crops, p. 20. Novi Sad, Serbia.

    Google Scholar 

  • Van der Veen, J. H. 1959. Tests of non-allelic interaction and linkage for quantitative characters in generations derived from two diploid pure lines. Genetica 30:201–32.

    Article  Google Scholar 

  • Warner, J. N. 1952. A method for estimating heritability. Agron J. 44:427–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnel R. Hallauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hallauer, A.R., Carena, M.J., Filho, J.B.M. (2010). Means and Variances. In: Quantitative Genetics in Maize Breeding. Handbook of Plant Breeding, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0766-0_2

Download citation

Publish with us

Policies and ethics