Skip to main content

Development and Use of Fluorescent Nanodiamonds as Cellular Markers

  • Chapter
  • First Online:
Nanodiamonds

Abstract

Diamond is an allotrope of carbon. A unique property that distinguishes it from the other carbon materials is that diamond is optically transparent and often contains point defects as color centers. Nitrogen vacancy (N-V) defects are the most noteworthy color centers in diamond. These centers can be produced reproducibly by ion beam irradiation, followed by thermal annealing, and can emit strong and stable fluorescence when excited by visible light. This unique optical property combined with the non-cytotoxicity and good surface functionalizability characteristics of the material makes nanoscale diamonds a promising fluorescent probe for bioimaging applications in cellular environments. This article summarizes the results of our efforts in production and characterization of bright, multicolored (red and green) fluorescent nanodiamonds (FNDs) and their use as cellular markers. Notable advancement of technologies along this line includes mass production of FNDs and real time tracking of a single 35-nm red FND particle in three dimensions in live cells. We envision that further development of the material will provide an increased sensitivity and improved capability for fruitful applications of FNDs in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Niemeyer CM (2001) Angew Chem Int Ed Engl 40:4128–4158

    Article  Google Scholar 

  2. Sahoo SK, Labhasetwar V (2003) Drug Discov Today 8:1112–1120

    Article  Google Scholar 

  3. Ferrari M (2005) Nature Rev Cancer 5:161–171

    Article  Google Scholar 

  4. Alivisatos P (2004) Nat Biotechnol 22:47–52

    Article  Google Scholar 

  5. Bharali DJ, Klejbor I, Stachowiak EK, Dutta P, Roy I, Kaur N, Bergey EJ, Prasad PN, Stachowiak MK (2005) Proc Natl Acad Sci U S A 102:11539–11544

    Article  Google Scholar 

  6. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Science 307:538–544

    Article  Google Scholar 

  7. Vosch T, Antoku Y, Hsiang JC, Richards CI, Gonzalez JI, Dickson RM (2007) Proc Natl Acad Sci U S A 104:12616–12621

    Article  Google Scholar 

  8. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  Google Scholar 

  9. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    Article  Google Scholar 

  10. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Proc Natl Acad Sci U S A 102:14284–14289

    Article  Google Scholar 

  11. Cui BX, Wu CB, Chen L, Ramirez A, Bearer EL, Li WP, Mobley WC, Chu S (2007) Proc Natl Acad Sci U S A 104:13666–13671

    Article  Google Scholar 

  12. Field JE (ed) (1992) Properties of Natural and Synthetic Diamond. Academic, London, UK

    Google Scholar 

  13. Nebel CE, Shin DC, Rezek B, Tokuda N, Uetsuka H, Watanabe H (2007) J R Soc Interface 4:439–461

    Article  Google Scholar 

  14. Holt KB (2007) Phil Trans R Soc A 365:2845–2861

    Article  Google Scholar 

  15. Krueger A (2008) Chem Eur J 14:1382–1390

    Article  Google Scholar 

  16. Dion I, Baquey C, Monties JR (1993) Int J Artif Organs 16:623–627

    Google Scholar 

  17. Yang W, Auciello O, Butler JE, Cai W, Carlisle JA, Gerbi JE, Gruen DM, Knickerbocker T, Lasseter TL, Russell JN Jr, Smith LM, Hamers RJ (2002) Nat Mater 1:253–257

    Article  Google Scholar 

  18. Hartl A, Schmich E, Garrido JA, Hernando J, Catharino SCR, Walter S, Feulner P, Kromka A, Steinmuller D, Stutzmann M (2004) Nat Mater 3:736–742

    Article  Google Scholar 

  19. Huang H, Pierstorff E, Osawa E, Ho D (2007) Nano Lett 7:3305–3314

    Article  Google Scholar 

  20. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) J Am Chem Soc 127:17604–17605

    Article  Google Scholar 

  21. Fu C-C, Lee H-Y, Chen K, Lim T-S, Wu H-Y, Lin P-K, Wei P-K, Tsao P-H, Chang H-C, Fann W (2007) Proc Natl Acad Sci U S A 104:727–732

    Article  Google Scholar 

  22. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Nature Nanotech 3:284–288

    Article  Google Scholar 

  23. 23. Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Diamond Relat Mater 18:567–573

    Google Scholar 

  24. Smith BR, Niebert M, Plakhotnik T, Zvyagin AV (2007) J Lumin 127:260–263

    Article  Google Scholar 

  25. Chao J-I, Perevedentseva E, Chung P-H, Liu K-K, Cheng C-Y, Chang C-C, Cheng C-L (2007) Biophys J 93:2199–2208

    Article  Google Scholar 

  26. Perevedentseva E, Cheng C-Y, Chung P-H, Tu J-S, Hsieh Y-H, Cheng C-L (2007) Nanotechnology 18:315102

    Article  Google Scholar 

  27. Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Nano Lett 7:3588–3591

    Article  Google Scholar 

  28. Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou JP, Chassaing G, Lavielle S (2008) ChemBioChem 9:2113–2119

    Article  Google Scholar 

  29. Faklaris O, Garrot D, Joshi V, Druon F, Boudou J-P, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Small 4:2236–2239

    Article  Google Scholar 

  30. Kossovsky N, Gelman A, Hnatyszyn HJ, Rajguru A, Garrell RL, Torbati S, Freitas SSF, Chow G-M (1995) Bioconjug Chem 6:507–511

    Article  Google Scholar 

  31. Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T (2002) Chem Phys Lett 351:105–108

    Article  Google Scholar 

  32. Huang L-CL, Chang H-C (2004) Langmuir 20:5879–5884

    Article  Google Scholar 

  33. Krueger A, Liang YJ, Jarre G, Stegk J (2006) J Mater Chem 16:2322–2328

    Article  Google Scholar 

  34. Chung P-H, Perevedentseva E, Tu J-S, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2006) Diamond Relat Mater 15:622–625

    Article  Google Scholar 

  35. Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Appl Phys Lett 90:163903

    Article  Google Scholar 

  36. Nguyen TTB, Chang H-C, Wu VW-K (2007) Diamond Relat Mater 16:872–876

    Article  Google Scholar 

  37. Krueger A, Stegk J, Liang YJ, Lu L, Jarre G (2008) Langmuir 24:4200–4204

    Article  Google Scholar 

  38. Yeap WS, Tan YY, Loh KP (2008) Anal Chem 80:4659–4665

    Article  Google Scholar 

  39. Liu K-K, Chen M-F, Chen P-Y, Lee TJF, Cheng C-L, Chang C-C, Ho Y-P, Chao J-I (2008) Nanotechnology 19:205102

    Article  Google Scholar 

  40. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Environ Sci Technol 39:1378–1383

    Article  Google Scholar 

  41. Liu K-K, Cheng C-L, Chang C-C, Chao J-I (2007) Nanotechnology 18:325102

    Article  Google Scholar 

  42. Schrand AM, Huang HJ, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai LM (2007) J Phys Chem B 111:2–7

    Article  Google Scholar 

  43. Schrand AM, Dai LM, Schlager JJ, Hussain SM, Osawa E (2007) Diamond Relat Mater 16:2118–2123

    Article  Google Scholar 

  44. Hall HT (1961) J Chem Educ 38:484–489

    Article  Google Scholar 

  45. Davies G (ed) (1994) Properties and growth of diamond, emis datareviews series No. 9, INSPEC. The Institute of Electrical Engineers, London, Chap. 3.

    Google Scholar 

  46. Davies G, Hamer MF (1976) Proc R Soc Lond A 348:285–298

    Article  Google Scholar 

  47. Jelezko F, Tietz C, Gruber A, Popa I, Nizovtsev A, Kilin S, Wrachtrup J (2001) Single Mol 2:255–260

    Article  Google Scholar 

  48. Wee T-L, Tzeng Y-K, Han C-C, Chang H-C, Fann W, Hsu J-H, Chen K-M, Yu Y-C (2007) J Phys Chem A 111:9379–9386

    Article  Google Scholar 

  49. Collins AT, Thomaz MF, Jorge MIB (1983) J Phys C 16:2177–2181

    Article  Google Scholar 

  50. Rand SC (1994) In: Davies G (ed.), Properties and growth of diamond, emis datareviews series no. 9, INSPEC. The Institute of Electrical Engineers, London, Chap. 7.4.

    Google Scholar 

  51. Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Science 276:2012–2014

    Article  Google Scholar 

  52. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H (2000) Phys Rev Lett 85:290–293

    Article  Google Scholar 

  53. Beveratos A, Brouri R, Gacoin T, Villing A, Poizat JP, Grangier P (2002) Phys Rev Lett 89:187901

    Article  Google Scholar 

  54. Dutt MVG, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov AS, Hemmer PR, Lukin MD (2007) Science 316:1312–1316

    Article  Google Scholar 

  55. Davies G, Lawson SC, Collins AI, Mainwood A, Sharp S (1992) Phys Rev B 46:13157–13170

    Article  Google Scholar 

  56. Davies G, Nazare MH, Hamer MF (1976) Proc R Soc Lond A 351:245–265

    Article  Google Scholar 

  57. Rand SC, DeShazer LG (1985) Opt Lett 10:481–483

    Article  Google Scholar 

  58. Roberts WT, Rand SC, Redmond S (2005) NASA Tech Briefs NPO-30796.

    Google Scholar 

  59. Crossfield MD, Davies G, Collins AT, Lightowlers EC (1974) J Phys C 7:1909–1917

    Article  Google Scholar 

  60. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon: New York. Free SRIM software (version 2003) is available from the website http://www.srim.org/

  61. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) J Am Chem Soc 128:11635–11642

    Article  Google Scholar 

  62. De Weerdt F, Van Royen J (2001) Diamond Relat Mater 10:474–479

    Article  Google Scholar 

  63. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV (2003) Mol Imaging 2:50–64

    Article  Google Scholar 

  64. Hui YY, Chang Y-R, Lim T-S, Lee H-Y, Fann W, Chang H-C (2009) Appl Phys Lett 94:013104

    Google Scholar 

  65. Lim T-S, Fu C-C, Lee K-C, Lee H-Y, Chen K, Cheng W-F, Pai WW, Chang H-C, Fann W (2009) Phys Chem Chem Phys 11:1508–1514

    Google Scholar 

  66. Pante N, Kann M (2002) Mol Biol Cell 13:425–434

    Article  Google Scholar 

  67. Muirhead KA, Horan PK, Poste G (1985) Nat Biotechnology 3:337–356

    Article  Google Scholar 

  68. Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668

    Article  Google Scholar 

  69. Chithrani BD, Chan WCW (2007) Nano Lett 7:1542–1550

    Article  Google Scholar 

  70. Slowing I, Trewyn BG, Lin VS-Y (2006) J Am Chem Soc 128:14792–14793

    Article  Google Scholar 

  71. Billinton N, Knight AW (2001) Anal Biochem 291:175–197

    Article  Google Scholar 

  72. Speidel M, Jonas A, Florin E-L (2003) Opt Lett 28:69–71

    Article  Google Scholar 

  73. Holtzer L, Meckel T, Schmidt T (2007) Appl Phys Lett 90:053902

    Article  Google Scholar 

  74. Cang H, Xu CS, Montiel D, Yang H (2007) Opt Lett 32:2729–2731

    Article  Google Scholar 

  75. Greber UF, Way M (2006) Cell 124:741–754

    Article  Google Scholar 

  76. Hong QA, Sheetz MP, Elson EL (1991) Biophys J 60:910–921

    Article  Google Scholar 

  77. Morita Y, Takimoto T, Yamanaka H, Kumekawa K, Morino S, Aonuma S, Kimura T, Komatsu N (2008) Small 4:2154–2157

    Article  Google Scholar 

  78. Vaijayanthimala V, Chang H-C (2009) Nanomed 4:47–55

    Google Scholar 

Download references

Acknowledgment

The author thanks Y.-R. Chang and H.-Y. Chou for their assistance in preparing this manuscript. This research was supported by the Academia Sinica and the National Science Council (Grant No. NSC 96-2120-M-001-008-) of Taiwan, ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Cheng Chang .

Editor information

Editors and Affiliations

Additional information

This article is dedicated to the memory of Wunshain Fann (1961–2008).

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, HC. (2010). Development and Use of Fluorescent Nanodiamonds as Cellular Markers. In: Ho, D. (eds) Nanodiamonds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0531-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0531-4_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0530-7

  • Online ISBN: 978-1-4419-0531-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics