Skip to main content

Interlimb Proportions in Humans and Fossil Hominins: Variability and Scaling

  • Chapter
The First Humans – Origin and Early Evolution of the Genus Homo

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Our understanding of the evolutionary trajectory of hominin limb proportions and overall body shape is severely hampered by the paucity of fossil individuals with associated elements from early in the human career (Walker, 1973; McHenry and Coffi ng, 2000; Richmond et al., 2002; Reno et al., 2005). It is now apparent that hind-limb elongation and modern human interlimb proportions emerged at least by the time of early Homo erectus (=ergaster) as represented by the fossils from Dmanisi at almost 1.8 million years ago (Lordkipanidze et al., 2007) and the “Nariokotome boy”, KNM-WT 15000, at approximately 1.6 million years ago (Ruff, 1993; Ruff and Walker, 1993). Interlimb proportions based on complete bone lengths in australopithecines are poorly known, and “Lucy” (A.L. 288-1, Australopithecus afarensis) still represents our best example of the “primitive” hominin condition (Johanson and Edey, 1981). With a humer-ofemoral index (100 × humerus length/femur length) near 85, A. afarensis is “intermediate” between African apes and modern humans (Jungers, 1982, 1991; Jungers and Stern, 1983; Richmond et al., 2002). This difference from humans is driven by a relatively short femur (but not as short as in apes), not by long arms (Jungers, 1994). It is also important to note that interlimb proportionality based on lengths need not correspond to estimates of interlimb size and shape based on dia-physeal and articular dimensions (McHenry, 1978; McHenry and Berger, 1998; Green et al., 2007). Long bone lengths, especially of the hind-limb elements, are most relevant to questions about the evolution of locomotor effi ciency and the kinematics of bipedalism (e.g., Jungers, 1982; Bramble and Lieberman, 2004; Pontzer, 2005; Steudel-Numbers, 2006).

BOU-VP-12/1 is another skeleton of a later australopith (possibly A. garhi), but its humerus and femur are both quite damaged and incomplete (Asfaw et al., 1999). Estimated and reconstructed lengths of these long bones are controversial and exhibit large confi dence intervals, whether based on regression or by eye (Richmond et al., 2002; Haeusler and McHenry, 2004; Reno et al., 2005). Although possible, it seems premature to conclude with any confi dence that its humerofemoral proportions were already “human-like” (Reno et al., 2005). Similarly, Homo habilis as represented by OH 62 has essentially indeterminate interlimb proportions, probably lying somewhere between those of gorillas and modern humans (Korey, 1990; Reno et al., 2005; but see Haeusler and McHenry, 2004). It appears risky at this time to develop complex evolutionary scenarios about limb length proportions predicated on BOU-VP-12/1 and/or OH 62.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argue, D., Donlon, D., Groves, C., Wright, R., 2006. Homo fl oresien-sis: microcephalic, pygmoid, Australopithecus, or Homo? Journal of Human Evolution 51, 360–374.

    Article  Google Scholar 

  • Asfaw, B., White, T., Lovejoy, O., Latimer, B., Simpson, S., Suwa, G., 1999. Australopithecus garhi: a new species of early hominid from Ethiopia. Science 284, 629–635.

    Article  Google Scholar 

  • Blaszczyk, M.B., Vaughan, C.L., 2007. Re-interpreting the evidence for bipedality in Homo fl oresiensis. South African Journal of Science 103, 409–414.

    Google Scholar 

  • Bramble, D.M., Lieberman, D.E., 2004. Endurance running and the evolution of Homo. Nature 424, 345–352.

    Article  Google Scholar 

  • Brown, P., Stikna, T., Morwood, M.J., Soejono, R.P., Jatmiko, Wayhu Saptomo, E., Awe Due, R., 2004. A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature 431, 1055–1061.

    Article  Google Scholar 

  • Devine, J., 1985. The versatility of human locomotion. American Anthropologist 87, 550–570.

    Article  Google Scholar 

  • Eckhardt, R.B., 2000. Human Paleobiology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Franciscus, R.G., Holliday, T.W., 1992. Hindlimb skeletal allometry in Plio-Pleistocene hominids with special reference to AL 288–1 (“Lucy”). Bulletin de la Memoires Society Anthropologie, Paris 4, 5–20.

    Article  Google Scholar 

  • Green, D.J., Gordon, A.D., Richmond, B.G., 2007. Limb-size proportions in Australopithecus afarensis and Australopithecus africanus. Journal of Human Evolution 52, 187–200.

    Article  Google Scholar 

  • Haeusler, M., McHenry, H.M., 2004. Body proportions of Homo habi-lis reviewed. Journal of Human Evolution 46, 433–465.

    Article  Google Scholar 

  • Holliday, T.W., Franciscus, R.G., 2001. Multivariate assessment of body shape in A.L. 288–1 (“Lucy”). American Journal of Physical Anthropology 32 (supplement), 82.

    Google Scholar 

  • Johanson, D.C., Edey, M., 1981. Lucy: The Beginnings of Humankind. Simon & Schuster, New York.

    Google Scholar 

  • Jungers, W.L., 1982. Lucy's limbs: skeletal allometry and locomotion in Australopithecus afarensis. Nature 297, 676–678.

    Article  Google Scholar 

  • Jungers, W.L., 1991. A pygmy perspective on body size and shape in Australopithecus afarensis (AL 288–1, “Lucy”). In: Senut, B., Coppens, Y. (Eds), Origine(s) de la Bipedie chez les Hominides. Cahiers de Paleoanthropologie, Paris, pp. 215–224.

    Google Scholar 

  • Jungers, W.L., 1994. Ape and hominid limb length. Nature 369, 194.

    Article  Google Scholar 

  • Jungers, W.L., Stern, J.T., 1983. Body proportions, skeletal allometry and locomotion in Hadar hominids: a reply to Wolpoff. Journal of Human Evolution 12, 673–684.

    Article  Google Scholar 

  • Jungers, W.L., Falsetti, A.B., Wall, C.E., 1995. Shape, relative size, and size-adjustments in morphometrics. Yearbook of Physical Anthropology 38, 137–161.

    Article  Google Scholar 

  • Jungers, W.L., Sutikna T., Jatmiko, Saptomo, E.W., Awe Due, R., Djubiantono, T., Morwood, M., 2008. Body size and shape in Homo fl oresiensis and pygmy humans. African Genesis: A Symposium on Hominid Evolution in Africa, p. 14.

    Google Scholar 

  • Korey, K.A., 1990. Deconstructing reconstruction: the OH 62 humerofem-oral index. American Journal of Physical Anthropology 83: 25–33.

    Article  Google Scholar 

  • Larson, S., Jungers, W.L., Morwood, M. J., Sutikna, T., Jatmiko, Saptomo, E.W., Due, RA., Djubiantono, T., 2007. Homo fl oresiensis and the evolution of the hominin shoulder. Journal of Human Evolution 53: 718–731.

    Article  Google Scholar 

  • Lieberman, D.E., Bramble, D.M., Raichlen, D.A., Shea, J.J., 2009. Brains, brawn and the evolution of endurance running capabilities. In: Grine, F.E., Fleagle, J.G., Leakey, R.E. (Eds), The First Humans: Origin of the Genus Homo. Springer, Dordrecht, pp. 77–92.

    Chapter  Google Scholar 

  • Lordkipanidze D., Jashashvili T., Vekua A., Ponce de León M.S., Zollikofer C.P.E., Rightmire G.P., Pontzer H., Ferring R., Oms O., Tappen M., Bukhsianidze M., Agusti J., Kahlke R., Kiladze G., Martinez-Navarro B., Mouskhelishvili A., Nioradze M., Rook L., 2007. Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449, 305–310.

    Article  Google Scholar 

  • Lovejoy, C.O., 1993. Modeling human origins: are we sexy because we're smart, or smart because we're sexy? In: Rasmussen, D.T. (Ed), The Origin and Evolution of Humans and Humanness. Jones & Bartlett, Boston, MA, pp. 1–28.

    Google Scholar 

  • Martin, R., Saller, K., 1959. Lehrbuch der Anthropologie. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • McHenry, H.M., 1978. Fore- and hindlimb proportions in Plio-Pleistocene hominids. American Journal of Physical Anthropology 49, 15–22.

    Article  Google Scholar 

  • McHenry, H.M., Berger, L.R., 1998. Limb lengths in Australopithecus and the origin of the genus Homo. South African Journal of Science 94, 447–450.

    Google Scholar 

  • McHenry, H.M., Coffi ng, K.E., 2000. Australopithecus to Homo: transformations in body and mind. Annual Review of Anthropology 29, 125–146.

    Article  Google Scholar 

  • Morwood, M.J., Brown, P., Jatmiko, Sutikna, T., Wahuy Saptomo, E., Westaway, K.E., Awe Due, R., Roberts, R.G., Maeda, T., Wasisto, S., Djubiantono, T., 2005. Further evidence for small-bodied homi-nins from the Late Pleistocene of Flores, Indonesia. Nature 437, 1012–1017.

    Article  Google Scholar 

  • Mosimann, J.E., James, F.C., 1979. New statistical methods for allom-etry with application to Florida red-winged blackbirds. Evolution 33, 444–459.

    Article  Google Scholar 

  • Pontzer, H., 2005. A new model predicting locomotor cost from limb length via force production. Journal of Experimental Biology 208, 1513–1524.

    Article  Google Scholar 

  • Pontzer, H., 2007a. Predicting the energy cost of terrestrial locomotion: a test of the LiMb model in humans and quadrupeds. Journal of Experimental Biology 210, 484–494.

    Article  Google Scholar 

  • Pontzer, H., 2007b. Effective limb length and the scaling of locomotor cost in terrestrial animals. Journal of Experimental Biology 210, 1752–1761.

    Article  Google Scholar 

  • Reno, P. L., DeGusta, D., Serrat, M. A., Meindl, R.S., White, T.D., Eckhardt, R.B., Kuperavage, A.J., Galik, K, Lovejoy, C.O., 2005. Plio-Pleistocene hominid limb proportions. Current Anthropology 46, 575–588.

    Article  Google Scholar 

  • Richards, G.D., 2006. Genetic, physiologic and ecogeographic factors contributing to variation in Homo sapiens: Homo fl oresiensis reconsidered. Journal of Evolutionary Biology 19, 1744–1767.

    Article  Google Scholar 

  • Richmond, B.G., Aiello, L.C., Wood, B.A., 2002. Early hominin limb proportions. Journal of Human Evolution 43, 529–548.

    Article  Google Scholar 

  • Richmond, B.G., Jungers, W.L., 2008. Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319, 1662–1665.

    Article  Google Scholar 

  • Ruff, C.B., 1993. Climatic adaptation and hominid evolution: the ther-moregulatory imperative. Evolutionary Anthropology 2, 53–60.

    Article  Google Scholar 

  • Ruff, C.B., Walker, A.C., 1993. Body size and body shape. In: Walker, A.C., Leakey, R.E. (Ed), The Nariokotome Homo erectus Skeleton. Harvard University Press, Cambridge, MA, pp. 234–265.

    Chapter  Google Scholar 

  • Schebesta, P., 1952. Die Negrito Asiens. St. Gabriel Verlag, Vienna.

    Google Scholar 

  • Smith, R.J., 2005. Species recognition in paleoanthropology: implications of small sample sizes. In: Lieberman, D.E., Smith, R.J., Kelley, J. (Eds), Interpreting the Past: Essays on Human, Primate, and Mammal Evolution. Brill Academic Publishers, Boston, MA, pp. 207–219.

    Google Scholar 

  • Stanley, S.M., 1992. An ecological theory for the origin of Homo. Paleobiology 18, 237–257.

    Google Scholar 

  • Steudel, K., 1994. Locomotor energetics and hominid evolution. Evolutionary Anthropology 3, 42–48.

    Article  Google Scholar 

  • Steudel-Numbers, K., 2006. Energetics in Homo erectus and other early hominins: the consequences of increased lower limb length. Journal of Human Evolution 51, 445–453.

    Article  Google Scholar 

  • Steudel-Numbers, K., Tilkens, M., 2004. The effect of lower limb length on the energetic cost of locomotion: implications for fossil hominids. Journal of Human Evolution 47, 95–109.

    Article  Google Scholar 

  • Sylvester, A.D., Merkl, B.C., Mahfouz, M.R., 2007. Reconstructing the AL 288–1 femur using three-dimensional computer models. American Journal of Physical Anthropology 44 (supplement), 228–229.

    Google Scholar 

  • Sylvester, A.D., Kramer, P.A., Jungers, W.L., 2008. Modern humans are not (quite) isometric. American Journal of Physical Anthropology 137, 371–383.

    Article  Google Scholar 

  • Tocheri, M., Jungers, W., Larson, S., Orr, C., Sutikna, T., Jatmiko, Saptomo, Due, E.R., Djubiantono, T., Morwood, M., 2007. Morphological affi nities of the wrist of Homo fl oresiensis. Abstracts of the 2007 Annual Palaeoanthropology Society Meeting, p. 28. Available at http://www.paleoanthro.org/meeting.htm

  • Vancata, V., 1996. Major patterns of early hominid evolution: body size, proportions, encephalization and sexual dimorphism. Anthropologie 34, 11–25.

    Google Scholar 

  • Walker, A., 1973. New Australopithecus femora from East Rudolph, Kenya. Journal of Human Evolution 2, 545–555.

    Article  Google Scholar 

  • Wolpoff, M.H., 1983. Lucy's lower limbs: long enough for Lucy to be fully bipedal? Nature 304, 59–61.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungers, W.L. (2009). Interlimb Proportions in Humans and Fossil Hominins: Variability and Scaling. In: Grine, F.E., Fleagle, J.G., Leakey, R.E. (eds) The First Humans – Origin and Early Evolution of the Genus Homo. Vertebrate Paleobiology and Paleoanthropology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9980-9_9

Download citation

Publish with us

Policies and ethics