Skip to main content

Stochastic Lowner Evolution and the Scaling Limit of Critical Models

  • Chapter
Polygons, Polyominoes and Polycubes

Part of the book series: Lecture Notes in Physics ((LNP,volume 775))

Great progress in the understanding of conformally invariant scaling limits of stochastic models, has been given by the Stochastic Löwner Evolutions (SLE). This approach has been pioneered by Schramm [46] and by Lawler, Schramm and Werner [31]. It describes a one-parameter family of conformally invariant measures of curves in the plane or a two-dimensional domain. This family is commonly re-ferred to as SLEκ, where κ parametrizes the family. It has been shown to be the scaling limit of many well-known and less well-known statistical lattice models. These models are typically members of the families of critical and tricritical [40] q-state Potts models [61] and of O(n) models [17], or believed to be in the corresponding universality class.

SLE describes the scaling limit of various open, non-crossing, stochastic paths on the lattice, which are, at least on one side, attached to the boundary. Therefore its application to polygons is restricted in various ways. In the first place it describes only the scaling limit. In many studies of lattice polygons, of course, the scaling limit is considered the most interesting aspect. The restriction to open paths attached to the boundary is more severe. This restriction has been lifted to some extent by recursively considering domains bounded by closed paths resulting from a previous SLE process. This approach applies only to paths that have a tendency to touch themselves (without, of course crossing), and this generalization is not the subject of this chapter. In most cases the paths under consideration by their nature occur in extensive numbers. However, one may concentrate on one of them, and treat the interaction with the others only as an ingredient that defines the stochastic measure of the path under consideration. This, in fact is precisely what SLE does.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. V. Ahlfors. Conformal invariants: topics in geometric function theory. McGraw-Hill, New York, 1973.

    MATH  Google Scholar 

  2. M. Bauer and D. Bernard. SLEκ growth processes and conformal field theories. Phys. Lett. B 543:135–138, 2002. arXiv: math-ph/0206028.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. M. Bauer and D. Bernard. Conformal Field Theories of Stochastic Loewner Evolutions. Comm. Math. Phys. 239:493–521, 2003. arXiv: hep-th/0210015.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. M. Bauer and D. Bernard. SLE martingales and the Virasoro algebra. Phys. Lett. B 557:309–316, 2003. arXiv: hep-th/0301064.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. M. Bauer and D. Bernard. Conformal transformations and the SLE partition function martin-gale. Ann. Henri Poincaré 5:289–326. arXiv: math-ph/0305061.

    Google Scholar 

  6. M. Bauer, D. Bernard, J. Houdayer. Dipolar SLE's. J. Stat. Mech. 0503:P001, 2005. arXiv:math-ph/0411038.

    Google Scholar 

  7. R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, London, 1982.

    MATH  Google Scholar 

  8. R. J. Baxter. q colourings of the triangular lattice. J. Phys. A 19:2821–2839, 1986.

    Article  ADS  MathSciNet  Google Scholar 

  9. R. J. Baxter, S. B. Kelland, and F. Y. Wu. Equivalence of the Potts model or Whitney polyno-mial with an ice-type model. J. Phys. A 9:397–406, 1976.

    Article  ADS  Google Scholar 

  10. V. Beffara. The dimension of the SLE curves. Ann. Prob. 36:1421–1452, 2002. arXiv: math.PR/0211322.

    Article  MathSciNet  Google Scholar 

  11. V. Beffara. Hausdorff dimensions for SLE6. Ann. Prob. 32:2606–2629, 2002. arXiv: math.PR/0204208.

    Article  MathSciNet  Google Scholar 

  12. F. Camia and C. M. Newman. Continuum nonsimple loops and 2D critical percolation. J. Stat. Phys. 37:157–173, 2004. arXiv: math.PR/0308122.

    Article  ADS  MathSciNet  Google Scholar 

  13. F. Camia, C. M. Newman. SLE(6) and CLE(6) from Critical Percolation. arXiv:math/0611116.

    Google Scholar 

  14. J. Cardy. Conformal invariance. In C. Domb and J. L. Lebowitz, editors, Phase transitions and critical phenomena, volume 11, pages 55–126. Academic Press, London, 1987.

    Google Scholar 

  15. J. Cardy. Stochastic Loewner Evolution and Dyson's Circular Ensembles. J. Phys. A 36:L379–L408, 2003. arXiv: math-ph/0301039.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. J. Cardy. SLE for theoretical physicists. Ann. Phys. 318:81–118, 2005.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. E. Domany, D. Mukamel, B. Nienhuis and A. Schwimmer. Duality relations and equivalences for models with O(n) and cubic symmetry. Nucl. Phys. B190:279, 1981.

    Article  ADS  Google Scholar 

  18. B. Duplantier. Harmonic measure exponents for two-dimensional percolation. Phys. Rev. Lett. 82:3940–3943, 1999.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. B. Duplantier. Conformally invariant fractals and potential theory. Phys. Rev. Lett. 84:1363–1367, 2000.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. B. Duplantier and K-H. Kwon. Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61:2514–2517, 1988.

    Article  ADS  Google Scholar 

  21. R. Friedrich and W. Werner. Conformal fields, restriction properties, degenerate representa-tions and SLE. C. R. Acad. Sci. Paris Ser. I 335:947–952, 2002. arXiv: math.PR/0209382.

    MATH  MathSciNet  Google Scholar 

  22. R. Friedrich and W. Werner. Conformal restriction, highest-weight representations and SLE. Comm. Math. Phys. 243:105–122, 2003. arXiv: math-ph/0301018.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. C. M. Fortuin and P. W. Kasteleyn. On the random cluster model 1: Introduction and relation to other models. Physica 57:536–564, 1972.

    Article  ADS  MathSciNet  Google Scholar 

  24. W. Kager, B. Nienhuis, L.P. Kadanoff. Exact solutions for Loewner evolutions. J. Stat. Phys. 115:805–822, 2004. arXiv: math-ph/0309006.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. W. Kager, B. Nienhuis. A guide to stochastic Löwner evolution and its application. J. Stat. Phys. 115:1149–1229, 2004. arXiv: math-ph/0312056.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G. F. Lawler. Hausdorff dimension of cut points for Brownian motion. Electron. J. Probab. 1:1–20, 1996.

    MATH  MathSciNet  Google Scholar 

  27. G. F. Lawler. The dimension of the frontier of planar Brownian motion. Elect. Comm. Probab. 1:29–47, 1996.

    MATH  MathSciNet  Google Scholar 

  28. G. F. Lawler. Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions. In Random Walks (Budapest, 1998), Bolyai Society Mathematical Studies, volume 9, pages 219–258, 1999.

    Google Scholar 

  29. G. F. Lawler. An introduction to the Stochastic Loewner Evolution. Available online at URL http://www.math.duke.edu/%7Ejose/esi.html, 2001.

    Google Scholar 

  30. G. F. Lawler and W. Werner. Intersection exponents for planar Brownian motion. Ann. Prob. 27(4):1601–1642, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187(2):237–273, 2001. arXiv: math.PR/9911084.

    Article  MATH  MathSciNet  Google Scholar 

  32. G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents II: Plane exponents. Acta Math. 187(2):275–308, 2001. arXiv: math.PR/0003156.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. F. Lawler, O. Schramm, and W. Werner. Values of Brownian intersection exponents III: Two-sided exponents. Ann. Inst. H. Poincaré Statist. 38(1):109–123, 2002. arXiv: math.PR/0005294.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. G. F. Lawler, O. Schramm, and W. Werner. Analyticity of intersection exponents for planar Brownian motion. Acta Math. 189:179–201, 2002. arXiv: math.PR/0005295.

    Article  MathSciNet  Google Scholar 

  35. G. F. Lawler, O. Schramm, and W. Werner. One-arm exponent for critical 2D percolation. Electron. J. Probab. 7(2):13 pages, 2001. arXiv: math.PR/0108211.

    Google Scholar 

  36. G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Prob. 32:939–995, 2001. arXiv: math.PR/0112234.

    MathSciNet  Google Scholar 

  37. G. F. Lawler, O. Schramm, and W. Werner. On the scaling limit of planar self-avoiding walk. In Fractal geometry and application, A jubilee of Benoît Mandelbrot, Amer. Math. Soc. Proc. Symp. Pure Math. 72, Amer. Math. Soc., Providence RI, 2004. arXiv: math.PR/0204277.

    Google Scholar 

  38. G. F. Lawler, O. Schramm, and W. Werner. Conformal restriction: the chordal case. J. Amer. Math. Soc. 16(4):917–955, 2003. arXiv: math.PR/0209343.

    Article  MATH  MathSciNet  Google Scholar 

  39. K. Löwner. Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89:103–121, 1923.

    Article  Google Scholar 

  40. B. Nienhuis, A.N. Berker, E.K. Riedel and M. Schick. First-and second-order phase transi-tions in Potts models; a renormalization-group solution. Phys. Rev. Lett. 43:737 1979.

    Article  ADS  Google Scholar 

  41. B. Nienhuis. Exact critical point and exponents of the O(n) model in two dimensions. Phys. Rev. Lett. 49:1062–1065, 1982.

    Article  ADS  MathSciNet  Google Scholar 

  42. B. Nienhuis. Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb Gas. Journal of Statistical Physics 34:731–761, 1984. Coulomb Gas formulation of two-dimensional phase transitions. In C. Domb and J. L. Lebowitz, editors, Phase transitions and critical phenomena, volume 11, pages 1–53. Academic Press, London, 1987.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. B. Nienhuis. Locus of the tricritical transition in a two-dimensional q-state Potts model. Phys-ica A 177:109–113, 1991.

    ADS  MathSciNet  Google Scholar 

  44. S. Rohde and O. Schramm. Basic properties of SLE. Ann. Math. 161:879–920, 2005. arXiv: math.PR/0106036.

    Article  MathSciNet  Google Scholar 

  45. H. Saleur and B. Duplantier. Exact determination of the percolation hull exponent in two dimentions. Phys. Rev. Lett. 58:2325–2328, 1987.

    Article  ADS  MathSciNet  Google Scholar 

  46. O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118:221–288, 2000. arXiv: math.PR/9904022.

    Article  MATH  MathSciNet  Google Scholar 

  47. O. Schramm. A percolation formula. Elect. Comm. Probab. 6:115–120, 2001. arXiv: math.PR/0107096.

    MathSciNet  Google Scholar 

  48. O. Schramm and S. Sheffield. The harmonic explorer and its convergence to SLE4. Ann. Prob. 33:2127–2148, 2003. arXiv: math.PR/0310210.

    Article  MathSciNet  Google Scholar 

  49. O. Schramm, S. Sheffield, D. B. Wilson. Conformal radii for conformal loop ensembles. arXiv:math/0611687.

    Google Scholar 

  50. S. Sheffield. Exploration trees and conformal loop ensembles. arXiv:math/0609167.

    Google Scholar 

  51. S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333(3):239–244, 2001. A longer version is available at URL http://www.math.kth.se/˜stas/papers/.

    MATH  ADS  Google Scholar 

  52. S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett. 8:729–744, 2001. arXiv: math.PR/0109120.

    MATH  MathSciNet  Google Scholar 

  53. S. Smirnov. Conformal Invariance in random cluster models. I Holomorphic fermions in the Ising model, 2007. arXiv:0708.0039.

    Google Scholar 

  54. W. Werner. Random planar curves and Schramm-Löwner Evolutions. Lecture notes from the 2002 Saint-Flour summer school Springer, 2003. arXiv: math.PR/0303354.

    Google Scholar 

  55. W. Werner. Conformal restriction and related questions. 2003. arXiv: math.PR/0307353.

    Google Scholar 

  56. W. Werner, Girsanov's transformation for SLEκρ processes, intersection exponents and hiding exponents. 2003. arXiv:math/0302115.

    Google Scholar 

  57. W. Werner. The conformally invariant measure on self-avoiding loops. J. Amer. Math. Soc. 21:137–169, 2005. arXiv:math/0511605.

    Article  Google Scholar 

  58. W. Werner. Some recent aspects of random conformally invariant systems. arXiv:math/0511268.

    Google Scholar 

  59. W. Werner. SLEs as boundaries of clusters of Brownian loops. C. R. Acad. Sci. Paris to appear. arXiv:math/0308164

    Google Scholar 

  60. D. B. Wilson. Generating random spanning trees more quickly than the cover time. In Proceed-ings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 296–303, New York, 1996. ACM.

    Google Scholar 

  61. F.Y. Wu. The Potts model. Rev. Mod. Phys. 54:235, 1982.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Canopus Academic Publishing Limited

About this chapter

Cite this chapter

Nienhuis, B., Kager, W. (2009). Stochastic Lowner Evolution and the Scaling Limit of Critical Models. In: Guttman, A.J. (eds) Polygons, Polyominoes and Polycubes. Lecture Notes in Physics, vol 775. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9927-4_15

Download citation

Publish with us

Policies and ethics