Skip to main content

EnvironmentalMonitoring by Use of Genomics andMetabolomics Technologies

  • Chapter
Atmospheric and Biological Environmental Monitoring

Abstract

The yeast Saccharomyces cerevisiae is one of the most characterized eucaryotes and its complete genome sequence was published in 1986. Thus, this organism is a good candidate for biological environmental monitoring. Omics (genomics, metabolomics) technology is being applied to environmental monitoring using yeast cells. For genomics studies, commercially available DNA microarrays are used and selected the highly induced genes by the cadmium treatment. The functional characterization of induced genes by cadmium stress suggests the accumulation of glutathione, as the almost all genes contributing sulfur amino acid biosynthesis are significantly induced. For metabolomics studies, capillary electrophoresis-mass spectrometry (CE-MS) is used for the separation and identification of metabolites. The metabolomics results suggest the accumulation of glutathione. This strongly agrees with the results obtained by genomics. However, the combined results found the negative biosynthesis of glycine. This proves that the accumulation of glutathione is not the reason to activated sulfur amino acid biosynthesis. By combining the genomic analysis with the metabolomic analysis, raise the possibility of discovering new mechanism that nobody has noticed until now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babu C.V.S., Song E.J., Babar S.M.E., Wi M.H. and Yoo Y.S. (2006), Capillary electrophoresis at the omics level: Towards systems biology. Electrophoresis, 27, 97–110.

    Article  Google Scholar 

  • Brenann R.J. and Schiestl R.H. (1996), Cadmium is an inducer of oxidative stress in yeast. Mutat Res, 356, 171–178.

    Google Scholar 

  • Celemedson C., et al. (44Scientists) (1996), MEIC evaluation of acute systemic toxicity. ATLA, 24, 251–272.

    Google Scholar 

  • Delaunay A., Isnard A.D. and Toledano M.B. (2000), H2O2 sensing through oxidation of the Yap1 transcription factor. EMBO J, 19, 5157–5166.

    Article  Google Scholar 

  • Dettmer K. and Hammock B.D. (2004), Metabolomics – A new exciting field within the “omics” sciences. Environ Health Perspect, 112, A396–A397.

    Google Scholar 

  • Dormer U.H., Westwater J., McLaren N.F., Kent N.A., Mellor J. and Jamieson D.J. (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem, 275, 32611–32616.

    Article  Google Scholar 

  • Dunn W.B. and Ellis D.I. (2005), Metabolomics: Current analytical platforms and methodologies. Trends Anal Chem, 24, 285–294.

    Article  Google Scholar 

  • Dunn W.B., Bailey N.J.C. and Johnson H.E. (2005), Measuring the metabolome: current analytical technologies. Analyst, 130, 606–625.

    Article  Google Scholar 

  • Ekwall B., Clemedson C., Crafoord B., Ekwall B., Hallander S., Walum E., and Bondesson I. (1998), MEIC evaluation of acute systemic toxicity. ATLA, 26, 571–616.

    Google Scholar 

  • Figueiredo-Pereira M.E., Yakushin S. and Cohen G. (1998), Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem, 273, 12703–12709.

    Article  Google Scholar 

  • Godon C. et al. (1998), The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem, 273, 22480–22489.

    Google Scholar 

  • Hatcher E.L., Chen Y. and Kang Y.J. (1995), Cadmium resistance in A549 cells correlates with elevated glutathione content but not antioxidant enzymatic-activities. Free Radic Biol Med, 19, 805–812.

    Article  Google Scholar 

  • Hogan D.A., Auchtung T.A. and Hausinger R.P. (1999), Cloning and characterization of a sulfonate/α-ketoglutarate dioxygenase from Saccharomyces cerev. J Bacteriol, 181, 5876–5879.

    Google Scholar 

  • Hussain T., Shukla G.S. and Chandra S.V. (1987), Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats – in vivo and in vitro studies. Pharmacol Toxicol. 60, 355–358.

    Article  Google Scholar 

  • Jianghai L., Yingmei Z., Dejun H. and Gang S. (2005), Cadmium induced MTs synthesis via oxidative stress in yeast Saccharomyces cerevisiae. Mol Cell Biochem, 280, 139–145.

    Article  Google Scholar 

  • Kitagawa E., Takahashi J., Momose Y. and Iwahashi H. (2002), The effects of the pesticide thiuram: Genome-wide screening of indicator genes by yeast DNA microarray. Environ Sci Technol, 36, 3908–3915.

    Article  Google Scholar 

  • Kohrer K. and Domdey H. (1990), Guide to yeast genetics and molecular biology. In Guthrie C., Funk G.R., editor. Methods Enzymol., Academic Press, San Diego, 194, 398–401.

    Google Scholar 

  • Krishnan P., Kruger N.J. and Ratcliffe R.G. (2005), Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot, 56, 255–265.

    Article  Google Scholar 

  • Kuhn K.M., DeRisi J.L., Brown P.O. and Sarnow P. (2001), Global and specific translational regulation in the genomic response of Saccharomyces cerevisiae to a rapid transfer from a fermentable to a nonfermentable carbon source. Mol Cell Biol, 21, 916–927.

    Article  Google Scholar 

  • Li Z.S., Lu Y.P., Zhen R.G., Szczypka M., Thiele D.J. and Rea P.A. (1997), A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato) cadmium. Proc Natl Acad Sci USA, 94, 42–47.

    Article  Google Scholar 

  • Mellor J., Rathjen J., Yian W., Branes C.A. and Dowell S.J. (1991), DNA-binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acid Res, 19, 2961–2969.

    Article  Google Scholar 

  • Momose Y. and Iwahashi H. (2001), Bioassay of cadmium using a DNA microarray: Genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium. Environ ToxicolChem, 20, 2353–2360.

    Article  Google Scholar 

  • Nigam D., Shukla G.S. and Agarwal A.K. (1999), Glutathione depletion and oxidative damage in mitochondria following exposure to cadmium in rat liver and kidney. Toxicol Lett, 106, 151–157.

    Article  Google Scholar 

  • Ramautar R., Demirci A. and de Jong G.J. (2006), Capillary electrophoresis in metabolomics. Trends Anal Chem, 25, 455–466.

    Article  Google Scholar 

  • Reifferscheid G. and Heil J. (1996), Validation of the SOS/umu test using test results of 486 chemicals and comparison with the Ames test and carcinogenicity data. Mutat Res, 369, 129–145.

    Article  Google Scholar 

  • Robertson D.G. (2005), Metabonomics in toxicology: A review. Toxicol Sci, 85, 809–822.

    Article  Google Scholar 

  • Rochfort S. (2005), Metabolomics reviewed: A new “Omics” platform technology for systems biology and implications for natural products research. J Nat Prod, 68, 1813–1820.

    Article  Google Scholar 

  • Sato S., Soga T., Nishioka T. and Tomita M. (2004), Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J, 40, 151–163.

    Article  Google Scholar 

  • Shibasaki T., Ohno I., Ishimoto F. and Sakai O. (1993), Characteristics of cadmium-induced nephrotoxicity in Syrian hamsters. Nippon Jinzo Gakkai Shi, 8, 913–917.

    Google Scholar 

  • Shiraishi Y. (1975), Cytogenetic studies in 12 patients with itai-itai disease. Human Genetics, 27, 31–44.

    Google Scholar 

  • Soga T., Ohashi Y., Ueno Y., Naraoka H., Tomita M. and Nishioka T. (2003), Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res, 2, 488–494.

    Article  Google Scholar 

  • Soga T., Ohashi Y., Ueno Y., Naraoka H., Tomita M. and Nishioka T. (2003), Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res, 2, 488–494.

    Article  Google Scholar 

  • Soga T., Ueno Y., Naraoka H., Ohashi Y., Tomita M. and Nishioka T. (2002), Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal Chem, 74, 2233–2239.

    Article  Google Scholar 

  • Tanaka Y., Higashi T., Rakwal R., Wakida S., Iwahashi, H. (2007), Quantitative analysis of sulfur-related metabolites during cadmium stress response in yeast by capillary electrophoresis-mass spectrometry. J Pharm Biomed Anal, 44, 608–613.

    Article  Google Scholar 

  • Tohoyama H., Tomoyasu T., Inoue M., Joho M. and Murayama T. (1992), The gene for cadmium metallothionein from cadmium-resistant yeast appears to be identical to CUP1 in copper-resistant strain. Curr Genet, 21, 275–280.

    Article  Google Scholar 

  • Viant M.R., Rosenblum E.S. and Tjeerdema R.S. (2003), NMR-based metabolomics: A powerful approach for characterizing the effects of environmental stressors on organism health. Environ Sci Technol, 37, 4982–4989.

    Article  Google Scholar 

  • Vido K., Spector D., Lagniel G., Lopez S. and Toledano M. (2001), A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J Biol Chem, 276, 8469–8474.

    Google Scholar 

  • Zahringer H., Holzer H. and Nwaka S. (1998), Stability of neutral trehalase during heat stress in Saccharomyces cerevisiae is dependent on the activity of the catalytic subunits of cAMP-dependent protein kinase, Tpk1 and Tpk2. Eur J Biochem, 255, 544–551.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Higashi, T., Tanaka, Y., Rakwal, R., Shibato, J., Wakida, Si., Iwahashi, H. (2009). EnvironmentalMonitoring by Use of Genomics andMetabolomics Technologies. In: Kim, Y.J., Platt, U., Gu, M.B., Iwahashi, H. (eds) Atmospheric and Biological Environmental Monitoring. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9674-7_13

Download citation

Publish with us

Policies and ethics