Skip to main content

Apoptotic, Autophagic and Necrotic Cell Death Types in Pathophysiological Conditions: Morphological and Histological Aspects

  • Chapter
Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases

Abstract

This chapter is intended as an assembly of a minimal atlas of how cells in animal and plant tissues can die in a controlled way. In accordance with the recommendations of the Nomenclature Committee on Cell Death, we recognize three types of programmed cell death (PCD) based on morphological features:type 1 (apoptosis), type 2 (autophagic cell death) and type 3 (necrotic cell death). We present evidence on the inter-relation or simultaneous occurrence of the different PCD modes, which poses difficulties for the study of cell death in organized tissues. We also address particular examples of cell death, such as mitotic catastrophe, entosis, cornification, and formation of lens fibers and erythrocytes, which do not fit in the three-part classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham MC, Lu Y, Shaham S (2007) A morphologically conserved nonapoptotic program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12:73–86

    Article  PubMed  CAS  Google Scholar 

  • Abrams JM, White K, Fessler LI et al (1993) Programmed cell death during Drosophila embryogenesis. Development 117:29–43

    PubMed  CAS  Google Scholar 

  • Aerbajinai W, Giattina M, Lee YT et al (2003) The proapoptotic factor Nix is coexpressed with bcl-xL during terminal erythroid differentiation. Blood 102:712–717

    Article  PubMed  CAS  Google Scholar 

  • Akcali KC, Khan SA, Moulton BC (1996) Effect of decidualization on the expression of bax and bcl-2 in the rat uterine endometrium. Endocrinology 137:3123–3130

    Article  PubMed  CAS  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C et al (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  PubMed  CAS  Google Scholar 

  • Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1:31–40

    Article  PubMed  CAS  Google Scholar 

  • Anglade P, Vyas S, Hirsch EC et al (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12:603–610

    PubMed  CAS  Google Scholar 

  • Arnheim G (1890) Coagulationsnecrose und Kernschwund. Virchows Arch Pathol Anat 120:367–383

    Article  Google Scholar 

  • Asai T, Stone JM, Heard JE et al (2000) Fumonisin B1-induced cell death in Arabidopsis protoplasts requies jasmonate-, ethylene-, and salicylate-dependent signaling pathways. Plant Cell 12:1823–1836

    Article  PubMed  CAS  Google Scholar 

  • Baehrecke EH (2002) How death shapes life during development. Nat Rev Mol Cell Biol 3:779–787

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Bartelmez GW (1933) Histological studies on the menstruating mucous membrane of the human uterus. Contrib Embryol 24:141–186

    Google Scholar 

  • Beemster GT, Vercruysse S, De Veylder L et al (2006) The Arabidopsis leaf as a model system for investigating the role of cell cycle regulation in organ growth. J Plant Res 119:43–50

    Article  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  • Bennett MR (1999) Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res 41:361–368

    Article  PubMed  CAS  Google Scholar 

  • Berry DL, Baehrecke EH (2007) Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131:1137–1148

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Rodríguez J (1998) A matter of death and life: the significance of germ cell death during spermatogenesis. Int J Androl 21:236–248

    Article  PubMed  Google Scholar 

  • Blanco-Rodríguez J, Martínez-García C (1996) Induction of apoptotic cell death in the seminiferous tubule of the adult rat testis: assessment of the germ cell types that exhibit the ability to enter apoptosis after hormone suppression by oestradiol treatment. Int J Androl 19:237–247

    Article  PubMed  Google Scholar 

  • Blanco-Rodríguez J, Martínez-García C, Porras A (2003) Correlation between DNA synthesis in the second, third and fourth generations of spermatogonia and the occurrence of apotosis in both spermatogonia and spermatocytes. Reproduction 126:661–668

    Article  PubMed  Google Scholar 

  • Blum JW, Baumrucker CR (2002) Colostral and milk insulin-like growth factors and related substances: mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol 23:101–110

    Article  PubMed  CAS  Google Scholar 

  • Bonke M, Thitamadee S, Mähönen AP et al (2003) APL regulates vascular tissue identity in Arabidopsis. Nature 426:181–186

    Article  PubMed  CAS  Google Scholar 

  • Botchkareva NV, Ahluwalia G, Shander D (2006) Apoptosis in the hair follicle. J Invest Dermatol 126:258–264

    Article  PubMed  CAS  Google Scholar 

  • Bowen ID, Morgan SM, Mullarkey K (1993) Cell death in the salivary glands of metamorphosing Calliphora vomitoria. Cell Biol Int 17:13–33

    Article  PubMed  CAS  Google Scholar 

  • Bredesen DE (1995) Neural apoptosis. Ann Neurol 38:839–851

    Article  PubMed  CAS  Google Scholar 

  • Bridger JM, Kill IR (2004) Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Exp Gerontol 39:717–724

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    Article  PubMed  CAS  Google Scholar 

  • Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging: accumulation of damaged mitochondria as a result of imperfect autophagocytosis. Eur J Biochem 269:1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  PubMed  CAS  Google Scholar 

  • Bursch W, Ellinger A, Torok L et al (1997) In vitro studies on subtypes and regulation of active cell death. Toxicol In Vitro 11:579–588

    Article  CAS  Google Scholar 

  • Bursch W, Hochegger K, Torok L et al (2000) Autophagic and apoptotic types of programmed cell death exhibit different fates of cytoskeletal filaments. J Cell Sci 113:1189–1198

    PubMed  CAS  Google Scholar 

  • Bursch W, Paffe S, Putz B et al (1990) Determination of the length of the histological stages of apoptosis in normal liver and in altered hepatic foci of rats.Carcinogenesis 11:847–853

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Jiang F, Sodmergen et al (2003) Time-course of programmed cell death during leaf senescence in Eucommia ulmoides. J Plant Res 116:7–12

    PubMed  Google Scholar 

  • Cataldo AM, Hamilton DJ, Barnett JL et al (1996) Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J Neurosci 16:186–199

    PubMed  CAS  Google Scholar 

  • Chautan M, Chazal G, Cecconi F et al (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970

    Article  PubMed  CAS  Google Scholar 

  • Cho A, Courtman DW, Langille BL (1995) Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res 76:168–175

    PubMed  CAS  Google Scholar 

  • Chu-Wang IW, Oppenheim RW (1978) Cell death of motoneurons in the chick embryo spinal cord. II. A quantitative and qualitative analysis of degeneration in the ventral root, including evidence for axon outgrowth and limb innervation prior to cell death. J Comp Neurol 177:59–85

    Article  PubMed  CAS  Google Scholar 

  • Cicinelli E, Cignarelli M, Resta L et al (1993) Effects of the repetitive administration of progesterone by nasal spray in postmenopausal women. Fertil Steril 60:1020–1024

    PubMed  CAS  Google Scholar 

  • Clarke M, Bennett M (2006) Defining the role of vascular smooth muscle cell apoptosis in atherosclerosis. Cell Cycle 5:2329–2331

    PubMed  CAS  Google Scholar 

  • Clarke M, Bennett M, Littlewood T (2007) Cell death in the cardiovascular system. Heart 93:659–664

    Article  PubMed  CAS  Google Scholar 

  • Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Coggeshall RE, Pover CM, Fitzgerald M (1994) Dorsal root ganglion cell death and surviving cell numbers in relation to the development of sensory innervation in the rat hindlimb. Brain Res Dev Brain Res 82:193–212

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Jonathan E, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83

    Article  CAS  Google Scholar 

  • D’Herde K, De Prest B, Roels F (1996) Subtypes of active cell death in the granulosa of ovarian atretic follicles in the quail (Coturnix coturnix japonica). Reprod Nutr Dev 36:175–189

    Article  PubMed  CAS  Google Scholar 

  • Dahm R (1999) Lens fibre cell differentiation. A link with apoptosis? Ophthalmic Res 31:163–183

    Article  PubMed  CAS  Google Scholar 

  • Dahmoun M, Boman K, Cajander S et al (1999) Apoptosis, proliferation, and sex hormone receptors in superficial parts of human endometrium at the end of the secretory phase. J Clin Endocrinol Metab 84:1737–1743

    Article  PubMed  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909

    Article  PubMed  CAS  Google Scholar 

  • de Magalhães JP, Migeot V, Mainfroid V et al (2004) No increase in senescence-associated β-galactosidase activity in Werner syndrome fibroblasts after exposure to H2O2. Ann N Y Acad Sci 1019:375–378

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Beeckman T, Inzé D (2007) The ins and outs of the plant cell cycle. Nat Rev Mol Cell Biol 8:655–665

    Article  PubMed  CAS  Google Scholar 

  • Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390

    Article  PubMed  CAS  Google Scholar 

  • Depalo R, Nappi L, Loverro G et al (2003) Evidence of apoptosis in human primordial and primary follicles. Hum Reprod 18:2678–2682

    Article  PubMed  Google Scholar 

  • Dharmarajan AM, Goodman SB, Atiya N et al (2004) Role of apoptosis in functional luteolysis in the pregnant rabbit corpus luteum: evidence of a role for placental-derived factors in promoting luteal cell survival. Apoptosis 9:807–814

    Article  PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ et al (1994) Arabidopsis mutants simulating disease resistance response. Cell 20:565–577

    Article  Google Scholar 

  • Duque G (2000) Apoptosis in cardiovascular aging research: future directions. Am J Geriatr Cardiol 9:263–264

    Article  PubMed  Google Scholar 

  • Eckhart L, Declercq W, Ban J et al (2000) Terminal differentiation of human keratinocytes and stratum corneum formation is associated with caspase-14 activation. J Invest Dermatol 115:1148–1151

    Article  PubMed  CAS  Google Scholar 

  • Ekshyyan O, Aw TY (2004) Apoptosis: a key in neurodegenerative disorders. Curr Neurovasc Res 1:355–371

    Article  PubMed  CAS  Google Scholar 

  • Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DJP, Anderson TJ (1981) Ultrastructural observations on cell death by apoptosis in the “resting” human breast. Virchows Arch 393:193–203

    Article  CAS  Google Scholar 

  • Festjens N, Vanden Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387

    Article  PubMed  CAS  Google Scholar 

  • Filonova LH, von Arnold S, Daniel G et al (2002) Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 9:1057–1062

    Article  PubMed  CAS  Google Scholar 

  • Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125

    PubMed  CAS  Google Scholar 

  • Flemming W (1885) Über die Bildung van Richtungsfiguren in Säugetiereiern beim Untergang Graaf’scher Follikel. Arch Anat Entwickelungsgeschichte 221–224

    Google Scholar 

  • Fraser HM, Lunn SF, Harrison DJ et al (1999) Luteal regression in the primate: different forms of cell death during natural and gonadotropin-releasing hormone antagonist or prostaglandin analogue-induced luteolysis. Biol Reprod 61:1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449

    Article  PubMed  CAS  Google Scholar 

  • Galán A, O’Connor JE, Valbuena D et al (2000) The human blastocyst regulates endometrial apoptosis in embryonic adhesion. Biol Reprod 63:430–439

    PubMed  Google Scholar 

  • Galis ZS, Sukhova GK, Lark MW et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243

    Article  PubMed  CAS  Google Scholar 

  • Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  • Gaytán F, Morales C, García-Pardo L et al (1998) Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol Reprod 59:417–425

    Article  PubMed  Google Scholar 

  • Glucksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev 26:59–86

    Article  Google Scholar 

  • Woliński J et al (2004) Epithelial cell apoptosis in the gut of pig neonates and chicken - new application for laser scanning cytometry. In Diederich M (ed): Proceedings of the Signal Transduction. Signal transduction pathways as therapeutic targets. Luxembourg 2004, p 133

    Google Scholar 

  • Godlewski MM, Hallay N, Bierla JB et al (2007) Molecular mechanism of programmed cell death in the gut epithelium of neonatal piglets. J Physiol Pharmacol 58:97–113

    PubMed  Google Scholar 

  • Godlewski MM, Slupecka M, Woliński J et al (2005) Into the unknown-The death pathways in the neonatal gut epithelium. J Physiol Pharmacol 56:7–24

    PubMed  Google Scholar 

  • Gray DHD, Seach N, Ueno T et al (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108:3777–3785

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci USA 93:12094–12097

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF et al (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    Article  PubMed  CAS  Google Scholar 

  • Gregory T, Yu C, Ma A et al (1999) GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94:87–96

    PubMed  CAS  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y et al (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Harris AJ, McCaig CD (1984) Motoneuron death and motor unit size during embryonic development of the rat. J Neurosci 4:13–24

    PubMed  CAS  Google Scholar 

  • Henell F, Ericsson JL, Glaumann H (1983) An electron microscopic study of the post-partum involution of the rat uterus. With a note on apparent crinophagy of collagen. Virchows Arch B Cell Pathol Incl Mol Pathol 42:271–287

    PubMed  CAS  Google Scholar 

  • Hengartner MO, Horvitz HR (1994) Programmed cell death in Caenorhabditis elegans. Curr Opin Genet Dev 4:581–586

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery DM, Zutter M, Hickey W et al (1991) Bcl-2 protein is topographically restricted in tissues characterized by apoptotic cell death. Proc Natl Acad Sci USA 88:6961–6965

    Article  PubMed  CAS  Google Scholar 

  • Horvitz HR, Chalfie M, Trent C et al (1982) Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216:1012–1014

    Article  PubMed  CAS  Google Scholar 

  • Hsueh AJ, Billig H, Tsafriri A (1994) Ovarian follicle atresia: a hormonally controlled apoptotic process. Endocr Rev 15:707–724

    PubMed  CAS  Google Scholar 

  • Huckins C, Oakberg EF (1978) Morphological and quantitative analysis of spermatogonia in mouse testes using whole mounted seminiferous tubules. I. The normal testes. Anat Rec 192:519–528

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga T (1995) The involvement of macrophages and lymphocytes in the apoptosis of enterocytes. Arch Histol Cytol 58:151–159

    Article  PubMed  CAS  Google Scholar 

  • Jäger K, Fisher H, Tschachler E et al (2007) Terminal differentiation of nail matrix keratinocytes involves up-regulation of DNase1L2 but is independent of caspase-14 expression. Differentiation 75:939–946

    PubMed  Google Scholar 

  • Jahnukainen K, Chrysis D, Hou M et al (2004) Increased apoptosis occurring during the first wave of spermatogenesis is stage-specific and primarily affects midpachytene spermatocytes in the rat testis. Biol Reprod 70:290–296

    Article  PubMed  CAS  Google Scholar 

  • James TN (1998) Normal and abnormal consequences of apoptosis in the human heart. Annu Rev Physiol 60:309–325

    Article  PubMed  CAS  Google Scholar 

  • Jellinger KA (2006) Challenges in neuronal apoptosis. Curr Alzheimer Res 3:377–391

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Kaplan DR (1984) Alternative modes of organogenesis in higher plants In: White RA, Dickenson WC (eds) Contemporary problems in plant anatomy. Academic Press, New York, pp 261–300

    Google Scholar 

  • Kavurma MM, Bhindi R, Lowe HC et al (2005) Vessel wall apoptosis and atherosclerotic plaque instability. J Thromb Haemost 3:465–472

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR (1971) Shrinkage necrosis: a distinct mode of cellular death. J Pathol 105:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Harmon BV, Searle J (1974) An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J Cell Sci 14:571–585

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Searle J (1973) Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch B Cell Pathol 13:87–102

    PubMed  CAS  Google Scholar 

  • Kerr JFR, Winterford CM, Harmon BV (1994) Apoptosis. Its significance in cancer and cancer therapy. Cancer 73:2013-2026

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  • Kim HS, Hwang KK, Seo JW et al (2000). Apoptosis and regulation of bax and bcl-x proteins during human neonatal vascular remodeling. Artheroscler Thromb Vasc Biol 20:957–963

    CAS  Google Scholar 

  • Kim HS, Seo JU, Hwang KK et al (1998) Role of apoptosis in the closure of human umbilical vessel at birth and its mechanism. Atherosclerosis 136:77

    Article  Google Scholar 

  • Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6:508–515

    Article  PubMed  CAS  Google Scholar 

  • Kokawa K, Shikone T, Nakano R (1996) Apoptosis in the human uterine endometrium during the menstrual cycle. J Clin Endocrinol Metab 81:4144–4147

    Article  PubMed  CAS  Google Scholar 

  • Kostic V, Jackson-Lewis V, de Bilbao F et al (1997) Bcl-2: prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science 277:559–562

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, El-Deiry WS, Golstein P et al (2005) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 12:1463–1467

    Article  PubMed  CAS  Google Scholar 

  • Krysko DV, Brouckaert G, Kalai M et al (2003) Mechanisms of internalization of apoptotic and necrotic L929 cells by a macrophage cell line studied by electron microscopy. J Morphol 258:336–345

    Article  PubMed  Google Scholar 

  • Kuma A, Hatano M, Matsui M et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lang RA, Bishop JM (1993) Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 74:453–462

    Article  PubMed  CAS  Google Scholar 

  • Lawson SJ, Davies HJ, Bennett JP et al (1997) Evidence that spinal interneurons undergo programmed cell death postnatally in the rat. Eur J Neurosci 9:794–799

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Richburg JH, Younkin SC et al (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138:2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Lefranc F, Facchini V, Kiss R (2007) Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 12:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598

    Article  PubMed  CAS  Google Scholar 

  • Leppert PC (1998) Proliferation and apoptosis of fibroblasts and smooth muscle cells in rat uterine cervix throughout gestation and the effect of the antiprogesterone onapristone. Am J Obstet Gynecol 178:713–725

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME et al (1996) Calcium-mediated apoptosis in plant hypersensitive disease resistance response. Curr Biol 6:427–437

    Article  PubMed  CAS  Google Scholar 

  • Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  PubMed  CAS  Google Scholar 

  • Li W, Dickman MB (2004) Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human bcl-2. Biotechnol Lett 26:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lints R, Driscoll M (1996) Programmed and pathological cell death in Caenorhabditis elegans. In: Holbrook N, Martin GR, Lockshin RA (eds) Cellular aging and cell death. Wiley, New York pp. 235–253

    Google Scholar 

  • Liu Y, Schiff M, Czymmek K et al (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA (1969) Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J Insect Physiol 15:1505–1516

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Willams CM (1964) Programmed cell death. II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10:643–649

    Article  CAS  Google Scholar 

  • Lockshin RA, Williams CM (1965) Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11:831–844

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2004) Apoptosis, autophagy, and more. Int J Biochem Cell Biol 36:2405–2419

    Article  PubMed  CAS  Google Scholar 

  • Lossi L, Gambino G (2008) Apoptosis of the cerebellar neurons. Histol Histopathol 23:367–380

    PubMed  Google Scholar 

  • Madeo F, Herker E, Maldener C et al (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  PubMed  CAS  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis and necrosis. An overview of cell death. Am J Pathol 146:3–15

    PubMed  CAS  Google Scholar 

  • Malamitsi-Puchner A, Sarandakou A, Tziotis J et al (2001) Evidence for a suppression of apoptosis in early postnatal life. Acta Obstet Gynecol Scand 80:994–997

    Article  PubMed  CAS  Google Scholar 

  • Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361

    Article  PubMed  CAS  Google Scholar 

  • Matova N, Cooley L (2001) Comparative aspects of animal oogenesis. Dev Biol 231:291–320

    Article  PubMed  CAS  Google Scholar 

  • McGee EA, Hsueh AJ (2000) Initial and cyclic recruitment of ovarian follicles. Endocr Rev 21:200–214

    Article  PubMed  CAS  Google Scholar 

  • Mea MD, Serafini-Fracassini D, Duca SD (2007) Programmed cell death: similarities and differences in animals and plants. A flower paradigm. Amino Acids 33:395–404

    Article  PubMed  CAS  Google Scholar 

  • Meeson A, Palmer M, Calfon M et al (1996) A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 122:3929–3938

    PubMed  CAS  Google Scholar 

  • Meeson AP, Argilla M, Ko K et al (1999) VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 126:1407–1415

    PubMed  CAS  Google Scholar 

  • Mills KR, Reginato M, Debnath J et al (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 101:3438–3443

    Article  PubMed  CAS  Google Scholar 

  • Mirkes PE (2008) Cell death in normal and abnormal development. Congenit Anom (Kyoto) 48:7–17

    CAS  Google Scholar 

  • Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Tilly JL (1999) Oocyte apoptosis: like sand through an hourglass. Dev Biol 213:1–17

    Article  PubMed  CAS  Google Scholar 

  • Murdoch WJ (1995) Programmed cell death in preovulatory ovine follicles. Biol Reprod 53:8–12

    Article  PubMed  CAS  Google Scholar 

  • Nam HG (1997) The molecular genetic analysis of leaf senescence. Curr Opin Biotechol 8:200–207

    Article  CAS  Google Scholar 

  • Nataraj A, Pathak S, Hopwood VL et al (1994) Bcl-2 oncogene blocks differentiation and extends viability but does not immortalize normal human keratinocytes. Int J Oncology 4:1211–1218

    Google Scholar 

  • Navarro CL, Cau P, Lévy N (2006) Molecular bases of progeroid syndromes. Human Mol Genet 15:R151–R161

    Article  CAS  Google Scholar 

  • Nishimura EK, Granter SR, Fisher DE (2005) Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science 307:720–724

    Article  PubMed  CAS  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    PubMed  Google Scholar 

  • Nussbaum M (1901) Zur Rückbildung embryonaler Anlagen. Arch Mikrosk Anat 57:676–705

    Article  Google Scholar 

  • O’Neill M, Núñez F, Melton DW (2003) p53 and a human premature ageing disorder. Mech Ageing Dev 124:599–603

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603

    Article  PubMed  CAS  Google Scholar 

  • Okano A, Ogawa H, Takahashi H et al (2007) Apoptosis in the porcine uterine endometrium during the estrous cycle, early pregnancy and post partum. J Reprod Dev 53:923–930

    Article  PubMed  CAS  Google Scholar 

  • Opferman JT (2007) Life and death during hematopoietic differentiation. Curr Opin Immunol 19:497–502

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Noh YS, Martínez DE et al (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41:831–844

    Article  PubMed  CAS  Google Scholar 

  • Overholtzer M, Mailleux AA, Mouneimne G et al (2007) A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 131:966–979

    Article  PubMed  CAS  Google Scholar 

  • Parr EL, Tung HN, Parr MB (1987) Apoptosis as the mode of uterine epithelial cell death during embryo implantation in mice and rats. Biol Reprod 36:211–225

    Article  PubMed  CAS  Google Scholar 

  • Piacentini M, Autuori F (1994) Immunohistochemical localization of tissue transglutaminase and bcl-2 in rat uterine tissues during embryo implantation and post-partum involution. Differentiation 57:51–61

    Article  PubMed  CAS  Google Scholar 

  • Pilar G, Landmesser L (1976) Ultrastructural differences during embryonic cell death in normal and peripherally deprived ciliary ganglia. J Cell Biol 68:339–356

    Article  PubMed  CAS  Google Scholar 

  • Quatacker JR (1971) Formation of autophagic vacuoles during human corpus luteum involution. Z Zellforsch Mikrosk Anat 122:479–487

    Article  PubMed  CAS  Google Scholar 

  • Quirino BF, Noh YS, Himelblau E et al (2000) Molecular aspects of leaf senescence. Trends Plant Sci 5:278–282

    Article  PubMed  CAS  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  PubMed  CAS  Google Scholar 

  • Rello S, Stockert JC, Moreno V et al (2005) Morphological criteria to distinguish cell death induced by apoptotic and necrotic treatments. Apoptosis 10:201–208

    Article  PubMed  CAS  Google Scholar 

  • Ricci MS, Zong WX (2006) Chemotherapeutic approaches for targeting cell death pathways. Oncologist 11:342–357

    Article  PubMed  CAS  Google Scholar 

  • Roach HI, Clarke NM (2000) Physiological cell death of chondrocytes in vivo is not confined to apoptosis. New observations on the mammalian growth plate. J Bone Joint Surg Br 82:601–613

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez I, Ody C, Araki K et al (1997) An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 16:2262–2270

    Article  PubMed  Google Scholar 

  • Rotello RJ, Lieberman RC, Lepoff RB et al (1992) Characterization of uterine epithelium apoptotic cell death kinetics and regulation by progesterone and RU486. Am J Pathol 140:449–456

    PubMed  CAS  Google Scholar 

  • Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell 8:393–402

    Article  PubMed  CAS  Google Scholar 

  • Sarandakou A, Protonotariou E, Rizos D et al (2003) Soluble Fas antigen and soluble Fas ligand in early neonatal life. Early Hum Dev 75:1–7

    Article  PubMed  CAS  Google Scholar 

  • Sarraf CE, Bowen ID (1988) Proportions of mitotic and apoptotic cells in a range of untreated experimental tumours. Cell Tissue Kinet 21:45–49

    PubMed  CAS  Google Scholar 

  • Saunders JW Jr (1966) Death in embryonic systems. Science 154:604–612

    Article  PubMed  Google Scholar 

  • Schlafke S, Enders AC (1975) Cellular basis of interaction between trophoblast and uterus at implantation. Biol Reprod 12:41–65

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Hermann R, Bursch W, Grasl-Kraupp B et al (1995) Role of active cell death (apoptosis) in multistage carcinogenesis. Toxicol Lett 82/83:143–148

    Article  CAS  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Article  Google Scholar 

  • Searle J, Collins DJ, Harmon B et al (1973) The spontaneous occurrence of apoptosis in squamous carcinomas of the uterine cervix. Pathology 5:163–169

    Article  PubMed  CAS  Google Scholar 

  • Shibahara T, Sato N, Waguri S et al (1995) The fate of effete epithelial cells at the villus tips of the human small intestine. Arch Histol Cytol 58:205–219

    Article  PubMed  CAS  Google Scholar 

  • Slomp J, Gittenberger-de Groot AC, Glukhova MA et al (1997) Differentiation, dedifferentiation, and apoptosis of smooth muscle cells during the development of the human ductus arteriosus. Arterioscler Thromb Vasc Biol 17:1003–1009

    PubMed  CAS  Google Scholar 

  • Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65:184–189

    Article  PubMed  Google Scholar 

  • Spillare EA, Robles AI, Wang XW et al (1999) p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62

    Article  PubMed  CAS  Google Scholar 

  • Strehler BL (ed) (1977) Time, cells, and aging, 2nd edn. Academic Press, New York

    Google Scholar 

  • Sulston JE, Horvitz HR (1977) Postembryonic cell lineages of the nematode Caenorhabditis elegans. Dev Biol 56:110–156

    Article  PubMed  CAS  Google Scholar 

  • Tadakuma T, Kizaki H, Odaka C et al (1990) CD4+CD8+ thymocytes are susceptible to DNA fragmentation induced by phorbol ester, calcium ionophore and anti-CD3 antibody. Eur J Immunol 20:779–784

    Article  PubMed  CAS  Google Scholar 

  • Takamoto N, Leppert PC, Yu SY (1998) Cell death and proliferation and its relation to collagen degradation in uterine involution of rat. Connect Tissue Res 37:163–175

    Article  PubMed  CAS  Google Scholar 

  • Tata JR (1968) Early metamorphic competence of Xenopus larvae. Dev Biol 18:415–440

    Article  PubMed  CAS  Google Scholar 

  • Thomas GS, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Tilly JL (2001) Emerging technologies to control oocyte apoptosis are finally treading on fertile ground. Scientific World Journal 1:181–183

    PubMed  CAS  Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E et al (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131

    PubMed  CAS  Google Scholar 

  • Tran HB, Ohlsson M, Beroukas D et al (2002) Subcellular redistribution of La/SSB autoantigen during physiologic apoptosis in the fetal mouse heart and conduction system. A clue to the pathogenesis of congenital heart block. Arthritis Rheum 46:202–208

    Article  PubMed  CAS  Google Scholar 

  • Trump BF, Berezesky IK, Chang SH et al (1997) The pathways of cell death: oncosis, apoptosis, and necrosis. Toxicol Pathol 25:82–88

    Article  PubMed  CAS  Google Scholar 

  • Vakifahmetoglu H, Olsson M, Zhivotovsky B (2008) Death through a tragedy: mitotic catastrophe. Cell Death Differ 15:1153–1162

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG (2005) Plant programmed cell death and the point of no return. Trends Plant Sci 10:478–483

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • Vaskivuo TE, Ottander U, Oduwole O et al (2002) Role of apoptosis , apoptosis-related factors and 17β-hydroxysteroid dehydrogenases in human corpus luteum regression. Mol Cell Endocrinol 194:191–200

    Article  PubMed  CAS  Google Scholar 

  • Veis DJ, Sorenson CM, Shutter JR et al (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    Article  PubMed  CAS  Google Scholar 

  • Vercammen D, Declercq W, Vandenabeele P et al (2007) Are metacaspases caspases? J Cell Biol 179:375–380

    Article  PubMed  CAS  Google Scholar 

  • Verma V (1983) Ultrastructural changes in human endometrium at different phases of the menstrual cycle and their functional significance. Gynecol Obstet Invest 15:193–212

    Article  PubMed  CAS  Google Scholar 

  • Walker NI, Bennett RE, Kerr JFR (1989) Cell death by apoptosis during involution of the lactating breast in mice and rats. Am J Anat 185:19–32

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Xiao C, Goff AK (2003) Progesterone-modulated induction of apoptosis by interferon-tau in cultured epithelial cells of bovine endometrium. Biol Reprod 68:673–679

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM et al (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  PubMed  CAS  Google Scholar 

  • Welsh AO, Enders AC (1993) Chorioallantoic placenta formation in the rat. III. Granulated cells invade the uterine luminal epithelium at the time of epithelial cell death. Biol Reprod 49:38–57

    Article  PubMed  CAS  Google Scholar 

  • White E (2008) Autophagic cell death unraveled. Pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4:399–401

    PubMed  CAS  Google Scholar 

  • Williams A, Jahreiss L, Sarkar S et al (2006) Aggregate-prone proteins are cleared from the cytosol by autophagy: therapeutic implications. Curr Top Dev Biol 76:89–101

    Article  PubMed  CAS  Google Scholar 

  • Woliβski J, Biernat M, Guilloteau P et al (2003) Exogenous leptin controls the development of the small intestine in neonatal piglets. J Endocrinol 177:215–222

    Article  Google Scholar 

  • Wyllie AH (1981) Cell death: a new classification separating apoptosis from necrosis. In: Bowen ID, Lockshin RA (eds) Cell death in biology and pathology, pp. 9–34. Chapman and Hall, London.

    Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. Plant Mol Biol 44:283–301

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Shaham S, Ledoux S et al (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell 75:641–652

    Article  PubMed  CAS  Google Scholar 

  • Zakeri Z, Bursch W, Tenniswood M et al (1995) Cell death: programmed apoptosis, necrosis, or other? Cell Death Differ 2:87–96

    PubMed  CAS  Google Scholar 

  • Zakeri Z, Penaloza C, Orlanski S et al (2008) Cell death in mammalian development. Curr Pharm Des 14:184–196

    Article  PubMed  Google Scholar 

  • Zakeri ZF, Ahuja HS (1997) Cell death/apoptosis: normal, chemically induced, and teratogenic effect. Mutat Res 396:149–161

    PubMed  CAS  Google Scholar 

  • Zakeri ZF, Quaglino D, Latham T et al (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478

    PubMed  CAS  Google Scholar 

  • Zarzyβska J, Gaikowska B, Wojewódzka U et al (2007) Apoptosis and autophagy in involuting bovine mammary gland is accompanied by up-regulation of TGF-β1 and suppression of somatotropic pathway. Pol J Vet Sci 10:1–9

    Google Scholar 

  • Zimmermann LE, Font RL (1966) Congenital malformations of the eye. JAMA 196:96–104

    Google Scholar 

  • Zou H, Henzel WJ, Liu X et al (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

D’Herde, K., Diez-Fraile, A., Lammens, T. (2009). Apoptotic, Autophagic and Necrotic Cell Death Types in Pathophysiological Conditions: Morphological and Histological Aspects. In: Krysko, D.V., Vandenabeele, P. (eds) Phagocytosis of Dying Cells: From Molecular Mechanisms to Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9293-0_2

Download citation

Publish with us

Policies and ethics