Skip to main content

Efficiency of Spherical Filters on Detection of Isotropic Defects in Textured Backgrounds

  • Chapter
Advances in Computational Vision and Medical Image Processing

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 13))

  • 1411 Accesses

This paper concerns the detection of small defects inserted in various textured backgrounds with more or less spherical filters and wavelets. We have evaluated the detection efficiency of the filters when the controlled isotropic defects are first added in synthetic textured images, then in real reference textured images, the Brodatz textures, and finally in medical images, parts of digital mammographies. Three families of filters are involved: the less spherical family is the Gabor filters, the nearly isotropic wavelets ϕ and ψ, and the Mexican hat filters, which are totally spherical. We have also studied the influence of the defect amplitude by considering various truncations. To achieve this, the defect height was truncated at different percentages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soo Chang Kim and Tae Jin Kang. Texture classification and segmentation using wavelet packet frame and gaussian mixture model. Pattern Recognition, 40(4):1207–1221, April 2007.

    Article  MATH  Google Scholar 

  2. K. Muneeswaran, L. Ganesan, S. Arumugam, and K. R. Soundar. Texture classification with combined rotation and scale invariant wavelet features. Pattern Recognition, 38(10):1495–1506, October 2005.

    Article  MATH  Google Scholar 

  3. O. Pichler, A. Teuner, and B.J. Hosticka. A comparison of texture feature extraction using adaptive gabor filtering, pyramidal and tree structured wavelet transforms. Pattern Recognition, 29(5):733–742, 1996.

    Article  Google Scholar 

  4. Jacques Brochard, Majdi Khoudeir, and Bertrand Augereau. Invariant feature extraction for 3d texture analysis using the autocorrelation function. Pattern Recognition Letters, 22(6–7):759–768, May 2001.

    MATH  Google Scholar 

  5. D. Chetverikov and A. Hanbury. Finding defects in texture using regularity and local orientation. Pattern Recognition, 35:203–218, 2002.

    Article  Google Scholar 

  6. D.-M. Tsai and C.-P. Lin. Fast defect detection in textured surfaces using 1d gabor filters. Advanced Manufacturing Technology, 20:664–675, 2002.

    Article  Google Scholar 

  7. Chaoquan Chen and Guoping Qiu. Detection algorithm of particle contamination in reticle images with continuous wavelet transform. In Proceedings of the British Machine Vision Conference, 2001.

    Google Scholar 

  8. H. Q. Jiang, L. Ma, H. Y. Jiang, and A. Rinoshika. Application of wavelet-based singularity detection technique in automatic inspection system. International Journal of Wavelets Multiresolution and Information Processing, 4(2):285–295, June 2006.

    Article  MATH  Google Scholar 

  9. H. W. Zhang, Y. L. Yin, and G. Z. Ren. An improved method for singularity detection of fingerprint images. Advances in Biometric Person Authentification, Proceedings, 3338:516–524, 2004.

    Google Scholar 

  10. J. M. Zhong and R. L. Ning. Image denoising based on wavelets and multifractals for singularity detection. IEEE Transactions on Image Processing, 14(10):1435–1447, October 2005.

    Article  Google Scholar 

  11. C. Gouttière, G. Lemaur, and J. De Coninck. Influence of filter sphericity on the detection of singularities in synthetic images. Signal Processing, 87(3):552–561, March 2007.

    Article  Google Scholar 

  12. C. Gouttière, G. Lemaur, and J. De Coninck. Influence of sphericity parameter on the detection of singularities in synthetic images. In Joao Manuel RS Tavares and Jorge R. M. Natal, editorsComputational Modelling of Objects Represented in Images: Fundamentals, Methods and Applications, volume 1, pages 211–214, London, July 2007. Taylor & Francis.

    Google Scholar 

  13. C. Gouttière and J. De Coninck. Detection of synthetic singularities in digital mammographies using spherical filters. In Joao Manuel RS Tavares and Jorge R. M. Natal, editorsComputational Vision and Medical Image Processing, pages 97–100, London, 2008. Taylor & Francis.

    Google Scholar 

  14. G. Lemaur. On the Choice of the Wavelet Basis Function for Image Processing. PhD thesis, University of Mons-Hainaut, Belgium, 2003.

    Google Scholar 

  15. G. Lemaur and J. De Coninck. Sphericity of wavelets may improve the detection of singularities in images. In Proceedings of Computing Engineering in Systems Applications, Lille, France, July 2003.

    Google Scholar 

  16. L. Cayon, J. L. Sanz, E. Martinez-Gonzalez, A. J. Banday, F. Argueso, J. E. Gallegos, K. M. Gorski, and G. Hinshaw. Spherical mexican hat wavelet: an application to detect non-gaussianity in the cobe-dmr maps. Monthly Notices of the Royal Astronomical Society, 326(4):1243–1248, October 2001.

    Article  Google Scholar 

  17. J. Gonzalez-Nuevo, F. Argueso, M. Lopez-Caniego, L. Toffolatti, J. L. Sanz, P. Vielva, and D. Herranz. The mexican hat wavelet family: application to point-source detection in cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 369(4):1603–1610, July 2006.

    Article  Google Scholar 

  18. S. Arivazhagan, L. Ganesan, and S. Bama. Fault segmentation in fabric images using gabor wavelet transform. Machine Vision and Applications, V16(6):356–363, February 2006.

    Article  Google Scholar 

  19. A. Bodnarova, M. Bennamoun, and S. Latham. Optimal gabor filters for textile flaw detection. Pattern Recognition, 35(12):2973–2991, December 2002.

    Article  MATH  Google Scholar 

  20. S.E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features based on gabor filters. IEEE Transactions on Image Processing, 11(10):1160–1167, 2002.

    Article  MathSciNet  Google Scholar 

  21. D. M. Tsai, S. K. Wu, and M. C. Chen. Optimal gabor filter design for texture segmentation using stochastic optimization. Image and Vision Computing, 19(5):299–316, April 2001.

    Article  Google Scholar 

  22. Alain Fournier, Don Fussell, and Loren Carpenter. Computer rendering of stochastic models. Communication of the ACM, 25(6):371–384, 1982.

    Article  Google Scholar 

  23. B. S. Manjunath and W. Y. Ma. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8):837–842, August 1996.

    Article  Google Scholar 

  24. R. Manthalkar, P. K. Biswas, and B. N. Chatterji. Rotation invariant texture classification using even symmetric gabor filters. Pattern Recognition Letters, 24(12):2061–2068, August 2003.

    Article  Google Scholar 

  25. D. R. Rohrmus. Invariant and adaptive geometrical texture features for defect detection and classification. Pattern Recognition, 38(10):1546–1559, October 2005.

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science +Business Media B.V.

About this chapter

Cite this chapter

Gouttièlre, C., Coninck, J. (2009). Efficiency of Spherical Filters on Detection of Isotropic Defects in Textured Backgrounds. In: Tavares, J.M.R.S., Jorge, R.M.N. (eds) Advances in Computational Vision and Medical Image Processing. Computational Methods in Applied Sciences, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9086-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-9086-8_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-9085-1

  • Online ISBN: 978-1-4020-9086-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics