Skip to main content

LINET – An International VLF/LF Lightning Detection Network in Europe

  • Chapter
Lightning: Principles, Instruments and Applications

Abstract

During the past years a lightning detection network (LINET) was developed at the University of Munich, which utilizes the low-frequency range (VLF/LF). It is steadily expanded and presently comprises about 90 sensors in 17 countries, covering an area from longitude 10° W–35° E to latitude 30° N–65° N. The network is serviced and continuously operated by nowcast GmbH, the official provider of lightning data for the German Weather Service, and offers real-time and historic data for many national and international scientific projects. LINET presents numerous options for users of lightning data, because it detects small signal amplitudes and, thus, is sensitive not only to weak cloud-to-ground strokes (CG) but also to cloud lightning (IC). The number of located IC discharges is large enough to attribute ‘total-lightning’-quality to the network, otherwise accessible only by additional implementation of VHF technologies. Discrimination of CG from IC is achieved by means of a new 3D time-of-arrival (TOA) method, applicable within the sufficiently dense parts of the network. IC emission heights are extracted for each cloud event, which are thought to reflect the central region of the involved lightning channel. Position accuracy of strokes reaches an average value as small as ~150 m, provided that corrections for site-errors and propagation effects have been carried out. Important for many applications is the narrow distribution of errors around the mean, i.e. false locations (‘outliers’) rarely occur, enhancing the efficiency of cell-tracking and other nowcasting applications of lightning data. During international co-operations in scientific campaigns directed by DLR (Deutsches Zentrum für Luft- und Raumfahrt), a smaller version of LINET has been deployed and tested in four continents, Europe, South America, Australia, and Central Africa. In order to examine the achieved features in some detail lightning data have been compared between LINET and many national and global networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Betz, H.-D., K. Schmidt, W. P. Oettinger, and M. Wirz, “Lightning Detection with 3D-Discrimination of Intracloud and Cloud-to-Ground Discharges”, J. Geophys. Res. Lett., Vol. 31, L11108, doi: 10.1029 /2004GL019821, 2004.

    Article  Google Scholar 

  • Betz, H.-D., K. Schmidt, B. Fuchs, W. P. Oettinger, and H. Höller, “Cloud Lightning: Detection and Utilization for Total-lightning measured in the VLF/LF Regime”, J. of Lightning Research, Vol. 2, 1–17, 2007.

    Google Scholar 

  • Betz, H.-D., K. Schmidt, P. Laroche, P. Blanchet, W. P. Oettinger, E. Defer, Z. Dziewit, and J. Konarski, “LINET – An International Lightning Detection Network in Europe”, Atmos. Res., in print, 2008a.

    Google Scholar 

  • Betz, H.-D., K. Schmidt, W. P. Oettinger, and B. Montag, “Cell-tracking with lightning data from LINET”, Ann. Geophys. 26, 1–7, 2008b.

    Article  Google Scholar 

  • Betz, H.-D., T. C. Marshall, M. Stolzenburg, K. Schmidt, W. P. Oettinger, E. Defer, J. Konarski, P. Laroche, and F. Dombai,“Detection of In-Cloud Lightning with VLF/LF and VHF Networks for Studies of the Initial Discharge Phase”, Geophys. Res. Lett., 2008GL035820, 2008c.

    Google Scholar 

  • Cramer, J. A., K. L. Cummins, A. Morris, R. Smith, T. R. Turner, “Recent Upgrades to the U.S. National Lightning Detection Network”, 18th Int. Lightning Detection Conference, 7–9 June, Helsinki, Finland, #48, 2004.

    Google Scholar 

  • Cummins, K. L., M. J. Murphy, E. A. Bardo, W. L. Hiscox, R. B. Pyle, and A. E Pifer, “A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network. J. Geophys. Res. 103, 9035–9044, 1998.

    Article  Google Scholar 

  • Dowden, R. L., J. B. Brundell, and C. J. Rodger, “VLF lightning location by time of group arrival (TOGA) at multiple sites”, J. Atmos. and Solar-Terr. Phys. 64, #7, 817–830, 2002.

    Article  Google Scholar 

  • Hoeller, H., H.-D. Betz, K. Schmidt, R. V. Calheiros, P. May, E. Houngninou, and G. Scialom, “Lightning characteristics observed by a VLF lightning detection network (LINET): An overview of world-wide field measurements”, submitted to Atmos. Chem. and Phys., 2008.

    Google Scholar 

  • Huntrieser, H., U. Schumann, H. Schlager, H. Höller, A. Giez, H.-D. Betz, D. Brunner, C. Forster, O. Pinto, and R. Calheiros, “Lightning activity in Brazilian thunderstorms during TROCCINOX: Implications for NOx production”, Atmos. Chem. Phys., 8, 921–953, 2008.

    Google Scholar 

  • Jerauld, J., V. A. Rakov, M. A. Uman, K. J. Rambo, and D. M. Jordan, “An Evaluation of the Performance Characteristics of the NLDN Using Triggered Lightning”, 18th Int. Lightning Detection Conf., Helsinki, 2004.

    Google Scholar 

  • Krider, E. P., Ch. J. Biagi, K. L. Cummins, and K. E. Kehoe, “NLDN Performance in Southern Arizona, Texas and Oklahoma in 2003–2004”, Int. Conf. on Grounding and Earthing, GROUND 2006, 471–486, Maceió, Brazil, 2006.

    Google Scholar 

  • Lang, T. J., L. J. Miller, M. Weisman, S. A. Rutledge, L. J. Barker, V. N. Bringi, V. Chandraseka, A. DetWiler, N. Doesken, J. Helsdon, Ch. Knight, P. Krehbiel, W. A. Lyons, D. MacGorman, E. Rasmussen, W. Rison, W. D. Rust, and R. J. Thomas, “The Severe Thunderstorm Electrification and Precipitation Study”, Bull. Am. Met. Soc., pp. 1107–1125, August 2004.

    Google Scholar 

  • Loboda, M., G. Maslowski, Z. Dziewit, H.-D. Betz, B. Fuchs, P. Oettinger, K. Schmidt, M. Wirz, and J. Dibbern, “A new Lightning Detection Network in Poland”, Int. Conf. on Grounding and Earthing, Maceió, Brazil. 2006.

    Google Scholar 

  • Loboda, M., H.-D. Betz, K. Schmidt, P. Baranski, J. Wiszcniowsky, and Z. Dziewit, “New Lightning Detection Networks in Poland – LINET and LLDN”, 29th Int. Conf. on Lightning Protection, June 23–26, Uppsala, #2.2, 10 pp,2008.

    Google Scholar 

  • Lee, A.C., “Ground truth confirmation and theoretical limits of an experimental VLF arrival time difference lightning flash locating system”, Quart. J. of the Royal Met. Soc., 115, No. 489, 1989.

    Google Scholar 

  • MacGorman, D. R., W. D. Rust, P. Krehbiel, W. Rison, E. Bruning, and K. Wiens, “The Electrical Structure of two Supercell Storms during STEPS”, Monthly Weather Review, Vol. 133, 2583–2607, 2005.

    Article  Google Scholar 

  • Maciazek, A., and B. Bartosik, “Availability of Lightning data in Poland from the Lightning Detection System SAFIR 3000 – IMGW”, 18th Int. Lightning Detection Conf. (ILDC), No. 41, Helsinki. 2004.

    Google Scholar 

  • Nag, A., and V. A. Rakov, “Pulse trains that are characteristic of preliminary breakdown in cloud-to-ground lightning but not followed by return stroke pulses”, J. Geophys. Res. 113, D01102, doi:10.1029/2007 JD008489, 2008.

    Article  Google Scholar 

  • Ogawa, T., and M. Brook, “The Mechanism of the Intracloud Lightning Discharge”, J. Geophys. Res. 69, No. 24, 5141–5150 (1964).

    Article  Google Scholar 

  • Orville, R. E., G. R. Huffines, W. R. Burrows, R. L. Holle, and K. L.Cummins, “The North American Lightning Detection Network (NALDN) – First Results: 1998–2000”, Monthly Weather Review, Vol. 133, 2098–2109, 2002.

    Article  Google Scholar 

  • Pinto, O., “The Brazilian lightning detection network: a historical background and future perspectives”, SIPDA Proc., Curitiba, 2003.

    Google Scholar 

  • Pinto, O., I. R. pinto, and K. P. Naccarato, “Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: a review”, Atmos. Res. 84, 189–200, 2007.

    Article  Google Scholar 

  • Rakov, V. A., and M. A. Uman, “Lightning: Physics and Effects”, 850 pp., Cambridge Univ. Press, New York, 2003.

    Google Scholar 

  • Richard, P., A. Delannoy, G. Labaune, and P. Laroche, “Results of spatial and temporal characterization of the VHF-UHF radiation of lightning”, J. Geophys. Res., Vol. 91 (D1), 1248–1260, 1986.

    Article  Google Scholar 

  • Richard, P., “Operational Applications of the SAFIR System. International Aerospace and Ground Conference on Lightning and Static Electricity”, KSC Florida, April 16–19, 1991.

    Google Scholar 

  • Rust, W. D., D. R. MacGorman, E. C. Bruning, S. A. Weiss, P. R. Krehbiel, R. J. Thomas, W. Rison, T. Hamlin, and J. Harlin, “Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS)”, Atmospheric Research, Vol. 76, 247–271, 2005.

    Article  Google Scholar 

  • Schmidt K., H.-D. Betz, W. P. Oettinger, M. Wirz, O. Pinto, K. P. Naccarato, H. Höller, Th. Fehr, and G. Held, “A Comparative Analysis of Lightning Data during the EU TROCCINOX / TroCCiBras Campaign”, VIIIth International Symposium on Lightning Protection, Sao Paulo, Brazil, 2005.

    Google Scholar 

  • Schumann, U., and H. Huntrieser, The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, SRef-ID: 1680-7324/acp/2007-7-3823, 2007.

    Article  Google Scholar 

  • Shao, X. M., and P. R. Krehbiel, “The spatial and temporal development of intracloud lightning”, J. Geophys. Res., Vol. 101, No. D21, pp. 26641–26668, 1996.

    Article  Google Scholar 

  • Shao, X. M., M. Stanley, A. Regan, J. Harlin, M. Pongratz, and M. Stock, “Total-lightning Observations with new and Improved Los Alamos Sferic Array (LASA)”, J. Atmosph. and Oceanic Techn. 23, 10, 1273–1288, 2006.

    Article  Google Scholar 

  • Smith, D. A., X. M. Shao, D. N. Holden, and C. T. Rhodes, “A distinct class of isolated intracloud lightning discharges”, J. Geophys. Res. 104, 4189–4212, 1999.

    Article  Google Scholar 

  • Thomas R. J., P. R. Krehbiel, W. Rison, S. J. Hunyady, W. P. Winn, T. Hamlin, and J. Harlin, “Accuracy of the Lightning Mapping Array”, J. Geophys. Res., Vol. 109, D14207, 2004.

    Article  Google Scholar 

  • Volland, H., in Handbook of Atmospherics, Vol. I, ed. H. Volland, CRC, Boca Raton, Fl., USA (1982).

    Google Scholar 

  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, “The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure”, J. Atmospheric Sciences, Vol. 62, No. 12, 4151–4177, 2005.

    Article  Google Scholar 

  • Williams E., B. Boldi, A. Matlin, M. Weber, S. Hodanish, D. Sharp, S. Goodman, R. Raghavan, and D. Buechler, “The behaviour of total-lightning activity in severe Florida thunderstorms”, Atmospheric Research 51, 245–265, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Betz, H.D., Schmidt, K., Oettinger, W.P. (2009). LINET – An International VLF/LF Lightning Detection Network in Europe. In: Betz, H.D., Schumann, U., Laroche, P. (eds) Lightning: Principles, Instruments and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9079-0_5

Download citation

Publish with us

Policies and ethics