Skip to main content

Integrated Servers for Structure-Informed Function Prediction

  • Chapter
From Protein Structure to Function with Bioinformatics
  • 2206 Accesses

No single method for predicting a protein's function from its three-dimensional structure is perfect; some methods work well in some cases, whereas other methods perform better in others. Consequently, it makes sense to apply a number of different predictive methods to a given protein structure and obtain either a consensus or the most likely prediction from them all. In this chapter we describe two web servers, ProKnow (http://proknow.mbi.ucla.edu) and ProFunc (http://www.ebi.ac.uk/profunc), that use a cocktail of methods for predicting function from 3D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschul SF, Madden TL, Schaffer AA, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anantharaman V, Aravind L, Koonin EV (2003) Emergence of diverse biochemical activities in evolutionarily conserved structural scaffolds of proteins Curr Opin Chem Biol 7:12–20

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Anantharaman V, Balaji S, et al. (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262

    Article  PubMed  CAS  Google Scholar 

  • Barker JA, Thornton JM (2003) An algorithm for constraint-based structural template matching: application to 3D templates with statistical analysis. Bioinformatics 19:1644–1649

    Article  PubMed  CAS  Google Scholar 

  • Berrondo M, Ostermeier M, Gray JJ (2008) Structure prediction of domain insertion proteins from structures of individual domains. Structure 16:513–527

    Article  PubMed  CAS  Google Scholar 

  • Bowers PM, Pellegrini M, Thompson MJ, et al. (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35

    Article  PubMed  Google Scholar 

  • Bryson K, McGuffin LJ, Marsden RL, et al. (2005) Protein structure prediction servers at University College London. Nucleic Acids Res 33:W36–W38

    Article  PubMed  CAS  Google Scholar 

  • Camon E, Magrane M, Barrell D, et al. (2004) The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res 32:D262–D266

    Article  PubMed  CAS  Google Scholar 

  • Carugo O (2006) Rapid methods for comparing protein structures and scanning structure databases. Curr. Bioinformatics 1:75–83

    Article  CAS  Google Scholar 

  • Cuff ME, Li H, Moy S, et al. (2007) Crystal structure of an acetyltransferase protein from Vibrio cholerae strain N16961. Proteins 69:422–427

    Article  PubMed  CAS  Google Scholar 

  • Fischer D, Eisenberg D (1997) Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Proc. Natl Acad Sci USA 94:11929–11934

    Article  PubMed  CAS  Google Scholar 

  • Glaser F, Pupko T, Paz I, et al. (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164

    Article  PubMed  CAS  Google Scholar 

  • Hermann JC, Ghanem E, Li Y, et al. (2006) Predicting substrates by docking high-energy intermediates to enzyme structures. J. Am. Chem. Soc. 128:15882–15891

    Article  PubMed  CAS  Google Scholar 

  • Holm L, Sander C (1998) Touring the fold space with DALI/FSSP. Nucleic Acids Res. 26:316–319

    Article  PubMed  CAS  Google Scholar 

  • Hulo N, Sigrist CJ, Le Saux V, et al. (2004) Recent improvements to the PROSITE database. Nucleic Acids Res. 32:D134–D137

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson EG, Thornton JM (1990) HERA: a program to draw schematic diagrams of protein secondary structures. Proteins 8:203–212

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (1999) Moonlighting proteins. Trends Biochem. Sci. 24:8–11

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Barker JA, Nobeli I, et al. (2003) Using structural motif templates to identify proteins with DNA binding function. Nucleic Acids Res. 31:2811–2823

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Shin DH, Choi IG, et al. (2003) Structure-based functional inference in structural genomics. J. Struct. Funct. Genomics 4:129–135

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J. Mol. Biol. 285:1887–1897

    Article  PubMed  CAS  Google Scholar 

  • Krissinel E, Henrick K (2004) Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D60:2256–2268

    CAS  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J. Mol. Graph. 13:323–330

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, Luscombe NM, Swindells MB, et al. (1996) Protein clefts in molecular recognition and function. Protein Science 5:2438–2452

    PubMed  CAS  Google Scholar 

  • Laskowski RA, Chistyakov VV, Thornton JM (2005a) PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 33: D266–D268

    Article  CAS  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005b) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res. 33:W89–W93

    Article  CAS  Google Scholar 

  • Laskowski RA, Watson JD, Thornton JM (2005c) Protein function prediction using local 3D templates. J. Mol. Biol. 352:614–626

    Article  CAS  Google Scholar 

  • Lichtarge O, Sowa ME (2002) Evolutionary predictions of binding surfaces and interactions. Curr. Opin. Struct. Biol. 12:21–27

    Article  PubMed  CAS  Google Scholar 

  • Madabushi S, Yao H, Marsh M, et al. (2002) Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol. 316:139–154

    Article  PubMed  CAS  Google Scholar 

  • Mallick P, Weiss R, Eisenberg D (2002) The directional atomic solvation energy: an atom-based potential for the assignment of protein sequences to known folds. Proc. Natl. Acad. Sci. USA 99:16041–16046

    Article  PubMed  CAS  Google Scholar 

  • Moult J (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15:285–289

    Article  PubMed  CAS  Google Scholar 

  • Nagano N, Hutchinson EG, Thornton JM (1999) Barrel structures in proteins: automatic identification and classification including a sequence analysis of TIM barrels. Prot. Sci. 8:2072–2084

    Article  CAS  Google Scholar 

  • Novotny M, Madsen D, Kleywegt GJ (2004) Evaluation of protein fold comparison servers. Proteins 54:260–270

    Article  PubMed  CAS  Google Scholar 

  • Orengo CA, Jones DT, Thornton JM (1994). Protein superfamilies and domain superfolds. Nature 372:631–634

    Article  PubMed  CAS  Google Scholar 

  • Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure 13:121–130

    Article  PubMed  CAS  Google Scholar 

  • Pearson WR (1998) Empirical statistical estimates for sequence similarity searches. J. Mol. Biol. 276:71–84

    Article  PubMed  CAS  Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res. 32: D129–D133

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res. 33:W116–W120

    Article  PubMed  CAS  Google Scholar 

  • Rigden DJ (2006) Understanding the cell in terms of structure and function: insights from structural genomics. Curr. Opin. Biotechnol. 17:457–464

    Article  PubMed  CAS  Google Scholar 

  • Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 20:374–376

    Article  PubMed  CAS  Google Scholar 

  • Shanahan HP, Garcia MA, Jones S, et al. (2004) Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Nucleic Acids Res. 32:4732–41

    Article  PubMed  CAS  Google Scholar 

  • Shrager J (2003) The fiction of function. Bioinformatics 19:1934–1936

    Article  PubMed  CAS  Google Scholar 

  • Sierk ML, Pearson WR (2004) Sensitivity and selectivity in protein structure comparison. Protein Sci. 13:773–785

    Article  PubMed  CAS  Google Scholar 

  • Stamm S, Ben-Ari S, Rafalska I, et al. (2005) Function of alternative splicing. Gene 344:1–20

    Article  PubMed  CAS  Google Scholar 

  • The Gene Ontology Consortium (2000) Gene Ontology tool for the unification of biology. Nat. Genet. 25:25–29

    Article  CAS  Google Scholar 

  • Watson JD, Milner-White EJ (2002a) A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol. 315:171–182

    Article  CAS  Google Scholar 

  • Watson JD, Milner-White EJ (2002b) The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-bind-ing regions of proteins. J. Mol. Biol. 315:183–191

    Article  CAS  Google Scholar 

  • Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein function from sequence and structural data. Curr. Opin. Struct. Biol. 15:275–284

    Article  PubMed  CAS  Google Scholar 

  • Watson JD, Sanderson S, Ezersky A, et al. (2007) Towards fully automated structure-based function prediction in structural genomics: a case study. J. Mol. Biol. 367:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Wollacott AM, Zanghellini A, Murphy P, et al. (2007) Prediction of structures of multidomain proteins from structures of the individual domains. Protein Sci. 16:165–175

    Article  PubMed  CAS  Google Scholar 

  • Xenarios I, Salwinski L, Duan XJ, et al. (2002) DIP, database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30:303–305

    Article  PubMed  CAS  Google Scholar 

  • Yakunin AF, Yee AA, Savchenko A, et al. (2004) Structural proteomics: a tool for genome annotation. Curr. Opin. Chem. Biol. 8:42–48

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Laskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Laskowski, R.A. (2009). Integrated Servers for Structure-Informed Function Prediction. In: Rigden, D.J. (eds) From Protein Structure to Function with Bioinformatics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9058-5_10

Download citation

Publish with us

Policies and ethics